
Legal Information
MIDL Programmer's Guide and Reference
Information in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this manual may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose without the express
written permission of Microsoft Corporation.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. The furnishing of this document does not give
you any license to these patents, trademarks, copyrights, or other intellectual property rights except as
expressly provided in any written license agreement from Microsoft.

Copyright Ó 1992 - 1996 Microsoft Corporation. All rights reserved.

Microsoft, MS, MS-DOS, Win32, Win32s, Windows, and Windows NT are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

Portions of this documentation are provided under license from Digital Equipment Corporation. Copyright
Ó 1990, 1992 Digital Equipment Corporation. All rights reserved.

DEC is a registered trademark and DECnet and Pathworks are trademarks of Digital Equipment
Corporation.

Other product and company names mentioned herein may be the trademarks of their respective owners.

About This Guide
This book is a reference for the Microsoft Interface Definition Language (MIDL) and a user's guide for the
MIDL compiler, which generates C language files from your IDL files.

Part I, Using the MIDL Compiler, lists the requirements for the C-compiler and pre-processor that MIDL
must interoperate with. This section also describes the files that the MIDL compiler generates for RPC
stubs, OLE interfaces, and OLE type libraries.

Part II, the MIDL Command-Line Reference, contains reference information for each command-line switch
and switch option recognized by the MIDL Compiler.

Part III, the MIDL Language Reference, contains a reference entry for each keyword in the Microsoft
Interface Definition Language.

Part IV, MIDL Compiler Errors and Warnings, lists the error and warning messages that the MIDL compiler
can generate.

Using The MIDL Compiler
The MIDL compiler is automatically installed as part of the Win32 SDK or Win16 SDK setup. The following
topics describe MIDL's C compiler and preprocessor requirements, the link libraries that are part of the
RPC product, and the files that MIDL generates for OLE interfaces, RPC interfaces, and type libraries.
For more information about the files that make up the RPC product, see Installing the RPC Programming
Environment.

Help
A complete listing of MIDL compiler switches and options is available when you use the MIDL compiler
/help and /? switches. The switches are organized by categories.

Response Files
As an alternative to placing all the options on the command line, the MIDL compiler accepts response
files that contain switches and arguments. A response file is a text file containing one or more MIDL
compiler command-line options. Unlike a command line, a response file allows multiple lines of options
and filenames. This is important on systems such as MS-DOS that have a hard-coded limit on the length
of a command line. You can specify a MIDL response file as:

midl @filename

filename

Specifies the name of the response file. The response filename must immediately follow the @
character. No white space is allowed between the @ character and the response filename.

Options in a response file are interpreted as if they were present at that place in the MIDL command line.

Each argument in a response file must begin and end on the same line. You cannot use the backslash
character (\) to concatenate lines.

MIDL supports command-line arguments that include one or more response files, combined with other
command-line switches:

midl -pack 4 @midl1.rsp -env win32 @midl2.rsp itf.idl

The MIDL compiler does not support nested response files.

C-Compiler and C-Preprocessor Requirements
The MIDL compiler must interoperate with the C compiler and C preprocessor. The following topics
describe the requirements for the C compiler and preprocessor.

C-Preprocessor Requirements for MIDL
The MIDL compiler uses the C preprocessor during initial processing of the IDL file. The operating system
used when you compile the IDL files is associated with a default C preprocessor. If you want to use a
different C-preprocessor name, the MIDL compiler switch /cpp_cmd allows you to override the default C-
preprocessor name:

midl /cpp_cmd cl386 filename

filename

Specifies the name of the IDL file.

During initial processing, the C preprocessor removes all preprocessor directives in the IDL file. After
preprocessing, the only directive that can appear in a file is the #line directive in one of the following
forms:

#line digit-sequence "filename" new-line

digit-sequence "filename" new-line

Other directives should not appear in either the IDL file or any header file included by the IDL file. These
other directives are not supported by the MIDL compiler and can cause errors. For a complete description
of the line directive and other preprocessor directives, see your C-compiler documentation.

The MIDL compiler requires the C preprocessor to observe the following conventions:

· The input file must be the last argument on the command line.
· The preprocessor must direct output to the standard output device, stdout.

Preprocessor directives present in the IDL file do not appear in the header file generated by the MIDL
compiler. For example, any values defined in the IDL file with the C #define statement are removed by
the C preprocessor. These #define statements will not appear in the header file generated by the MIDL
compiler. If such values are defined only in the MIDL file and are required by C source files, the C
compiler will report errors when it tries to compile these source files.

These are the four workarounds that are recommended:

· Use cpp_quote to reproduce #define in the generated header file.
· Use const declaration specification.
· Use header files that are included in the IDL file and the C source code.
· Use enumeration constants in the IDL file.

To get a declaration in the generated header file with cpp_quote, use the following statement:

cpp_quote ("#define ARRSIZE 10");

This statement results in the following line being generated in the header file:

#define ARRSIZE 10

You can reproduce manifest constants using the constant-declaration syntax:

const short ARRSIZE = 10

This syntax results in the following line being generated in the header file:

#define ARRSIZE 10

You can define separate header files that contain only preprocessor directives and include them in both
the IDL file and the C source files. Although the directives will not be available in the header file generated
by the MIDL compiler, the C source program can include the separate header file.

You can also use enumeration constants in the IDL file. Enumeration constants are not removed during
the early phases of MIDL compilation by the C-compiler preprocessor, so these constants are available in
the header file generated by the MIDL compiler. For example, the statement

typedef enum midlworkaround { MAXSTRINGCOUNT = 300 };

will not be removed during MIDL compilation by the C preprocessor. The constant MAXSTRINGCOUNT is
available to C source programs that include the header file generated by the MIDL compiler.

Verifying Preprocessor Options
To verify the correct operation of /cpp_opt options, invoke the C preprocessor independently before
including the command line as part of the MIDL compiler command line. When called independently, the
C compiler correctly reports errors caused by invalid options.

Incorrect usage of the MIDL command-line /cpp_opt switch can produce error messages related to the
IDL file. These errors are incorrectly reported by the MIDL compiler when operating with some C
compilers.

For example, invalid command-line syntax to the Microsoft C compiler can be reported as a syntax error
in the IDL file when that syntax is included as part of the MIDL compiler command line. The error is not in
the IDL file, but in the MIDL compiler /cpp_opt input.

The following MIDL compiler command line contains the /cpp_opt switch and related options:

midl /cpp_cmd "cl" /cpp_opt /E foo.idl

The options in this command line can be verified by invoking the compiler only, as shown:

cl /E foo.idl

C-Compiler Requirements for MIDL
The MIDL compiler requires the C compiler to support a packing level of 1, 2, 4, or 8. The command-line
option for Microsoft C compilers that controls packing is /Zplevel, where level is the packing level 1, 2, 4,
or 8. The following rules govern the alignment of compound types:

· Base-type fields of size < packing level start on a (0 modulo size) address.
· Base-type fields of size >= packing level start on a (0 modulo packing level) address.
· The compound type itself (and any field of compound type) is aligned according to the strictest

alignment requirement on any of its fields.
· Compound types are padded to the next (0 modulo level) address. This padding appears in the size

returned by the C SIZEOF macro.

As an example, consider a compound type consisting of a 1-byte character, an integer 4 bytes long, and a
1-byte character:

struct mystructtype {
 char c1; /* requires 1 byte */
 long l2; /* requires 4 bytes */
 char c3; /* requires 1 byte */
 } mystruct;

For packing level 4, the structure mystruct is aligned on a (0 mod 4) boundary and sizeof(struct
mystructtype) = 12.

For packing level 2, the structure mystruct is aligned on a (0 mod 2) boundary and sizeof(struct
mystructtype) = 8.

C-Compiler Requirements for Callbacks in Microsoft Windows 3.x
When you use Microsoft 16-bit Visual C/C++ to develop your RPC application for Microsoft Windows 3.x
platforms, compile with the /GA switch. The /GA switch directs the compiler to generate code that loads
the DS register from the SS register on entry to a far exported function in a protected-mode application
based on Windows 3.x.

For protected-mode, 16-bit Windows applications, the /GA switch allows the C compiler to generate the
code for performing the housekeeping chores required when switching between tasks. This code is
needed when your RPC interface contains one or more callback functions. Without this code, these
callback functions can fail at run time due to an incorrect DS value.

When you use compilers other than Microsoft 16-bit Visual C/C++, use the compiler switch that is
equivalent to /GA.

Previous versions of the Microsoft C compiler and 16-bit Windows used calls to the Windows 3.x function
MakeProcInstance, and the /Gw switch to generate this code. The /GA switch is a more efficient way to
accomplish the same tasks.

When you do not compile using the /GA switch (for example, when you are using a compiler that does not
support the /GA switch), your application must:

1. Compile using the /Gw switch (or its equivalent).
2. Add the client stub functions to the EXPORTS section of the application's DEF file.
3. Replace function pointers in the the client stub function dispatch table with function pointers returned

by MakeProcInstance.

The function dispatch table is part of the RPC_CLIENT_INTERFACE structure defined in the RPC header
file RPCDCEP.H. For example, step 3 can be implemented using the following C code:

#include "hello.h" // generated stub file
RPC_DISPATCH_FUNCTION Old, New;
HINSTANCE hInst;
RPC_CLIENT_INTERFACE * If = Hello_ClientIfHandle;
...
 for (i = 0; i < If->DispatchTable->DispatchTableCount; i++)
 {
 Old = If->DispatchTable->DispatchTable[i];
 New = (RPC_DISPATCH_FUNCTION) MakeProcInstance(Old, hInst);
 If->DispatchTable->DispatchTable[i] = New; // overwrite
 }
...

Link Libraries for MS-DOS
These are the static libraries that are included in MS-DOS for the RPC client application:

Static library Description
RPC.LIB Base RPC functions and name-service

functions.
RPCNDR.LIB NDR and other stub-helper functions.
NDRLIB10.LIB If you are using MIDL 1.0 on MS-DOS,

you must connect to this library. All
other users should disregard this
library. Note that this library is meant to
be a temporary solution and MIDL 1.0
users should migrate to MIDL 2.0 at the
earliest occasion.

The following RPC transports are included for MS-DOS clients:

Pseudo-dynamic-link
library

Description

RPC16C1.RPC Client named-pipe transport
RPC16C3.RPC Client TCP/IP transport
RPC16C5.RPC NetBIOS transport
RPC16DG3.RPC Datagram UPD transport
RPC16DG6.RPC Datagram IPX transport
RPC16C6.RPC Client SPX transport
RPCNS.RPC Name-service functions
RPCNSLM.RPC LAN Manager support functions
RPCNSMGM.RPC Name-service management functions

Link Libraries for Microsoft Windows 3.x
The following RPC import libraries are included for Microsoft 16-bit Windows clients:

Import library Description
RPCW.LIB RPC API and name-service

functions.
RPCNDRW.LIB NDR and other stub-helper

functions.

The following RPC dynamic-link libraries are included for Microsoft 16-bit Windows clients:

Dynamic-link library Description
RPCNS1.DLL Name service
RPCRT1.DLL 16-bit Windows run-time library
RPC16C1.DLL Client named-pipe transport
RPC16C3.DLL Client TCP/IP transport
RPC16C5.DLL Client NetBIOS transport
RPC16C6.DLL SPX transport
RPC16DG3.DLL Datagram UDP transport
RPC16DG6.DLL Datagram IPX transport

Link Libraries for Microsoft Windows NT and Windows 95
The following RPC import libraries are included for Microsoft 32-bit Windows clients and servers:

Import library Description
RPCNDR.LIB Helper functions
RPCNS4.LIB Name-service functions
RPCRT4.LIB 32-bit Windows run-time functions

The following RPC libraries are included for Microsoft 32-bit Windows clients and servers:

Dynamic-link library Description
RPCLTC1.DLL Client named-pipe transport
RPCLTS1.DLL Server named-pipe transport (NT

only)
RPCLTC3.DLL Client TCP/IP transport
RPCLTS3.DLL Server TCP/IP transport
RPCLTC5.DLL Client NetBIOS transport
RPCLTS5.DLL Server NetBIOS transport
RPCLTC6.DLL Client SPX transport
RPCLTS6.DLL Server SPX transport
RPCDGC6.DLL Client IPX transport (NT only)
RPCDGS6.DLL Server IPX transport (NT only)
RPCDGC3.DLL Client UDP transport (NT only)
RPCDGS3.DLL Server UDP transport (NT only)
RPCNS4.DLL Name service
RPCRT4.DLL 32-bit Windows run-time library

Using the __midl Predefined Constant
When the MIDL compiler processes the input IDL and ACF files, __midl is defined by default and is used
for conditional compilation to attain consistency throughout the build. This phases out the use of defines
in the header files, such as MIDL_PASS, and replaces them with a consistent flag.

If you choose, you can override this default by specifying the following on the command line:

-U__midl

See also

/U

Files Generated for an RPC Interface
The MIDL compiler generates the C-language stub and header files necessary to create the interface
between the client application and the server application. The following topics describe each of the files
generated for an RPC interface. For more information on defining and implementing an RPC interface see
The Microsoft RPC Programmer's Guide and Reference.

The Client Stub
The client stub module provides surrogate entry points on the client for each of the operations defined in
the input IDL file.

When the client application makes a call to the remote procedure, its call first goes to the surrogate
routine in the client stub file. The client stub routine performs the following functions:

· Marshals arguments. The client stub packages input arguments into a form that can be transmitted to
the server.

· Calls the client run-time library to transmit arguments to the remote address space and invoke the
remote procedure in the server address space.

· Unmarshals output arguments. The client stub unpackages output arguments and returns to the
caller.

The MIDL compiler switches /client, /cstub, and /out affect the client stub file.

The Server Stub
The server stub provides surrogate entry points on the server for each of the operations defined in the
input IDL file.

When a server stub routine is invoked by the RPC run-time library, it performs the following functions:

· Unmarshals input arguments (unpacks the arguments from their transmitted formats).
· Calls the actual implementation of the procedure on the server.
· Marshals output arguments (packages the arguments into the transmitted forms).

The MIDL compiler switches /env, /server, /sstub, and /out affect the server stub file.

The Header File
The header file contains definitions of all the data types and operations declared in the IDL file. The
header file must be included by all application modules that call the defined operations, implement the
defined operations, or manipulate the defined types.

The MIDL compiler switches /header and /out affect the header file.

Targetting Stubs for Specific 32-Bit Platforms
Some of the features of Microsoft RPC and the MIDL 3.0 compiler are platform-specific and are intended
for implementation in distributed applications that run only on Windows NT 4.0 or a later version. Some
features are supported in Windows NT 3.51 and Windows 95, as well as in later versions, but are not
supported on older 32-bit, or 16-bit platforms.

As a safeguard, the MIDL 3.0 compiler generates macros that facilitate compatibility checking during the
C compilation phase. If the interface uses features supported only on Windows NT 4.0, MIDL generates a
TARGET_IS_NT40_OR_LATER macro. If supported features require Windows NT 3.51 or Windows95, a
TARGET_IS_NT351_OR_WIN95_OR_LATER macro is generated. These macros, defined in rpcndr.h,
depend on the environment variables WINVER and _WIN32_WINNT and are evaluated by the C/C++
compiler.

If, at compile time, you get an error message indicating that you need a specific platform to run this stub,
first check to make sure you have not used a feature not available on this platform. For example, the pipe
type constructor, the /Oif compiler option, and the user_marshal and wire_marshal attributes are only
available on Windows NT 4.0. Stubs using these features will not run on earlier systems. The /Oic
compiler switch is available on NT. 3.51 and Windows 95, but is not available in earlier versions.

Also, the technology needed to use OLE and OLE Automation data types (for example, BSTR or
STGMEDIUM) in remote operations is present only on NT 4.0. Therefore, you cannot develop a custom
interface that uses these data types in a remote procedure call to run on earlier platforms.

If you know that your target platform is correct for the features you are using, you need to explicitly set the
environment variables in your makefile.

To build for Windows NT 3.51 or Windows 95
Add this line to your makefile:

CFLAGS = $(CFLAGS) -DWINVER=0x400

To build for Windows NT 4.0
Add this line to your makefile:

CFLAGS = $(CFLAGS) -D_WIN32_WINNT=0x400

Note that this target control is not in effect when you are building for MS-DOS, 16-bit Windows, or
Macintosh platforms.

See Also
/Oi, pipe, wire_marshal, user_marshal, Marshaling OLE Data Types

Files Generated for an OLE Interface
The following topics describe each of the files generated for a custom OLE interface, which you identify
by including the object attribute in the interface attribute list of the IDL file. For OLE interfaces, the MIDL
compiler combines all client and object server routines into a single interface proxy file. This file includes
the surrogate entry points for both clients and servers. In addition, the MIDL compiler generates an
interface header file, a private header file, and an interface UUID file. You will use all these files when
creating a proxy DLL that contains the code to support the use of the interface by both client applications
and object servers. You will also use the interface header file and the interface UUID file when creating
the executable file for a client application that uses the interface.

See Also
ACF, /app_config, IDL, Building a Proxy/Stub DLL

The Interface Proxy File
The interface proxy file (name_P.C) is a C file that contains routines equivalent to those in the client stub,
server stub, and client and server files of an RPC interface. This file contains implementations of
CProxyInterface and CStubInterface classes that are derived from the CProxy and CStub classes of
the base interface. For example, an interface named ISomeInterface derived from the IUnknown
interface is implemented in the CProxyISomeInterface and CStubISomeInterface classes derived from the
CProxyIUnknown and CStubIUnknown classes.

The interface proxy file includes the following sections:

· The implementation of a CProxyInterface class.
The virtual member functions of this class provide a client application's surrogate entry points for each
of the interface functions. These member functions marshal the input arguments into a transmittable
form, transmit the marshalled arguments along with information that identifies the interface and the
operation, and then unmarshal the return value and any output arguments when the transmitted
operation returns.

· The implementation of a CStubInterface class.
The virtual member functions of this class provide an object server's surrogate entry points for each of
the interface functions. These member functions unmarshal the input arguments, invoke the server's
implementation of the interface function, and then marshal and transmit the return value and any
output arguments. A CStubInterface class also includes a member function that is invoked by the
RPC run-time library when a client application calls one of the interface functions. This routine calls
the surrogate routine specified by the RPC message.

· Marshalling and unmarshalling support routines for complex data types.

Use the /proxy MIDL compiler switch to override the default name of the interface proxy file. The /env
and /out switches affect this file.

The Header Files
The interface header file (name.H) contains type definitions and function declarations based on the
interface definition in the IDL file. Include this file in the source files for the proxy DLL and for client
applications that use the interface.

The /header MIDL compiler switch overrides the default name of the interface header file.

The Interface UUID File
The interface UUID file defines the constant IID_Interface and initializes it to the interface's UUID
specified in the IDL file. Client applications and the proxy DLL use this constant to identify the interface.

The /iid MIDL compiler switch overrides the default name of the interface UUID file.

Marshaling OLE Data Types
To make it easier to use certain OLE Automation data types and OLE handles in remote operations,
wire_marshal typedefs for these data types, and their related helper functions, are available by importing
Win32 IDL files and linking to the OLE and OLE AUTOMATION DLL files. These files are automatically
installed on your system during installation of Microsoft® Windows NT® or Windows® 95.

· To use the BSTR data type in remote procedure calls, import the wtypes.idl file into your interface
definition (IDL) file and link to oleaut32.lib when building your distributed application. This will let your
stubs use the ready-made helper functions BSTR_UserSize, BSTR_UserMarshal,
BSTR_UserUnmarshal, and BSTR_UserFree.

· To use other OLE Automation data types, such as VARIANT and SAFEARRAY, or types that use
those types (for example, DISPPARAM and EXCEPINFO), import the objidl.idl file into your IDL file
and link to the oleaut32.lib at build time. This will allow you to use the appropriate helper routines.

· To use OLE data types and handles (such as CLIPFORMAT, SNB, STGMEDIUM,
ASYNC_STGMEDIUM, HMETAFILE_PICT, HENHMETAFILE, HMETAFILE, HBITMAP, HPALETTE,
and HGLOBAL), import the objidl.idl file into your interface definition file and link to the ole32.lib at
build time.

· The following OLE handles are also defined with the wire_marshal attribute, but only as handles
within a machine since they cannot be used in remote procedure calls to other machines at this time:
HWND, HMENU, HACCEL, HDC, HFONT, HICON, HBRUSH. Import the objidl.idl file into your IDL
file and link to ole32.lib at build time to use these handles in interprocess communication on a single
machine. The helper routines for these data types may change to include support for remote
marshaling in a future release.

Note The technology needed to support the above-described data types in proxy/stub code is part
of Windows NT 4.0 only; this support is not present in Windows NT 3.51, Windows 95, or earlier
versions of Windows. Therefore any application you develop on Windows NT 4.0, that uses these
data types in remote procedure calls, will not run on an earlier platform. (The upcoming DCOM
release for Windows 95 will include this support.) If your application needs to run on older platforms,
and it uses these data types in remote procedure calls, you will need to create your own marshaling
routines, using the transmit_as or represent_as attributes and their related helper functions. This
restriction does not apply to type libraries generated with MIDL 3.0 for Automation/dual interfaces.

See Also
The wire_marshal Attribute, The type_UserSize Function, The type_UserMarshal Function, The
type_UserUnmarshal Function, The type_UserFree Function, The transmit_as Attribute, The
represent_as Attribute, Targetting Stubs for Specific 32-Bit Platforms

Generating a Type Library With MIDL
Microsoft's Interface Definition Language (IDL) now includes the complete Object Definition Language
(ODL) syntax. This allows you to use the 32-bit MIDL compiler instead of MKTYPLIB.EXE to generate a
type library and optional header files for an OLE application.

Note When the documentation refers to an ODL file, this means a file that MKTYPLIB can parse.
When it refers to an IDL file, this means a file that MIDL parses. This is strictly a naming convention.
The MIDL compiler will parse an input file regardless of its filename extension.

The top-level element of the ODL syntax is the library statement (library block). Every other ODL
statement, with the exception of the attributes that are applied to the library statement, must be defined
within the library block.When the MIDL compiler sees a library block it generates a type library in much
the same way as MKTYPLIB does. With a few exceptions, described in Differences Between MIDL and
MKTYPLIB, the statements within the library block should follow the same syntax as in the ODL language
and MKTYPLIB.

You can apply ODL attributes to elements that are defined either inside or outside the library block. These
attributes have no effect outside the library block unless the element they are applied to is referenced
from within the library block. Statements inside the library block can reference an outside element either
by using it as a base type, inheriting from it, or by referencing it on a line as shown:

<some IDL definitions including definitions for interface IFoo and struct
bar>
[<some attributes>]
library a
{
interface IFoo;
struct bar;
...
};

If an element defined outside the library block is referenced within the library block, then its definition will
be put into the generated type library.

The MIDL compiler treats the statements outside of a library block as a typical IDL file and parses those
statements as it has always done. Normally, this means generating C-language stubs for an RPC
application.

For more information about the general syntax for an ODL file see ODL File Syntax.

Additional Files Required To Generate a Type Library
In order to compile an IDL file that contains a library statement, the OLE and OLE AUTOMATION DLL
files must be on your system. These files are automatically installed during installation of Microsoft®
Windows NT™ or Windows® 95.

Effective with Windows NT 4.0, there is a new version of OLEAUT32.DLL that supports a richer format for
32-bit type libraries. MIDL looks for this DLL on the build machine; if the new version is present, MIDL
generates a new-format type library, otherwise it generates an old-format type library.

Note for 16-bit developers
If your application must interoperate with 16-bit applications, you must use the old-format type library for
compatibility. The MIDL command-line option /old overrides this default and directs the MIDL compiler to
generate old-format type libraries even if the newer version of OLEAUT32.DLL is present.

Some of the base types that MKTYPLIB supports are not directly supported in MIDL. MIDL obtains
definitions for these base types by automatically importing oaidl.idl whenever it sees a library statement.
You need to ensure that this file is somewhere in your include path. The oaidl.idl file, and the files that it
imports (objidl.idl, unkwn.idl, and wtypes.idl) are automatically installed when you install the Win32 SDK.

See Also
Marshaling OLE Data Types, /old, /new

Differences Between MIDL and MKTYPLIB
There are a few key areas in which the MIDL compiler differs from MKTYPLIB. Most of these differences
arise because MIDL is oriented more toward C-syntax than MKTYPLIB.

In general, you will want to use the MIDL syntax in your IDL files. However, if you need to compile an
existing ODL file, or otherwise maintain compatibility with MKTYPLIB, use the /mktyplib203 MIDL
compiler option to force MIDL to behave like MKTYPLIB.EXE, version 2.03. (This is the last release of the
MKTYPLIB tool.) Specifically, the /mktyplib203 option resolves these differences:

· typedef syntax for complex data types
In MKTYPLIB, both of the following definitions generate a TKIND_RECORD for "bar" in the type
library. The tag "foo" is optional and, if used, will not show up in the type library.
typedef struct foo { ... } bar;
typedef struct { ... } bar;

If an optional tag is missing, MIDL will generate it, effectively adding a tag to the definition supplied by
the user. Since the first definition has a tag, MIDL will generate a TKIND_RECORD for "foo" and a
TKIND_ALIAS for "bar" (defining "bar" as an alias for "foo"). Because the tag is missing in the second
definition, MIDL will generate a TKIND_RECORD for a mangled name, internal to MIDL, that is not
meaningful to the user and a TKIND_ALIAS for "bar". This has potential implications for type library
browsers that simply show the name of a record in their user interface. If you expect a
TKIND_RECORD to have a real name, unrecognizable names could appear in the user interface.This
behavior also applies to union and enum definitions, with the MIDL compiler generating
TKIND_UNIONs and TKIND_ENUMs, respectively.
MIDL also allows C-style struct, union and enum definitions. For example, the following definition is
legal in MIDL:
struct foo { ... };
typedef struct foo bar;

· boolean data types
In MKTYPLIB, the boolean base type and the MKTYPLIB data type BOOL equate to VT_BOOL,
which maps to VARIANT_BOOL, and which is defined as a short. In MIDL, the boolean base type is
equivalent to VT_UI1, which is defined as an unsigned char, and the BOOL data type is defined as a
long. This leads to difficulties if you mix IDL syntax and ODL syntax in the same file while still trying to
maintain compatibility with MKTYPLIB. Because the data types are different sizes, the marshaling
code will not match what is described in the type information. If you want a VT_BOOL in your type
library, you should use the VARIANT_BOOL data type.

· GUID definitions in header files
In MKTYPLIB, GUIDs are defined in the header file with a macro that can be conditionally compiled to
generate either a GUID predefinition or an instantiated GUID. MIDL normally puts GUID predefinitions
in its generated header files and GUID instantiations only in the file generated by the /iid switch.

The following differences in behavior can not be resolved by using the /mktyplib203 switch:

· Scope of symbols in an enum declaration
In MKTYPLIB the scope of symbols in an enum is local. In MIDL, the scope of symbols in an enum is
global, as it is in C. For example, the following code will compile in MKTYPLIB, but will generate a
duplicate name error in MIDL:
typedef struct { ... } a;
enum {a=1, b=2, c=3};

· Scope of public attribute
If you apply the public attribute to an interface block, MKTYPLIB treats every typdef inside that
interface block as public. MIDL requires that you explicitly apply the public attribute to those typedefs
that you want public.

· Importlib search order
If you import more than one type library, and if these libraries contain duplicate references,
MKTYPLIB resolves this by using the first reference that it finds. MIDL will use the last reference that
it finds. For example, given the following ODL syntax, library C will use the FOO typedef from library A
if you compile with MKTYPLIB, and the FOO typedef from library B if you compile with MIDL:
[...]library A
{
 typedef struct tagFOO
 {...}FOO
}

[...]library B
{
 typedef struct tagFOO
 {...} FOO
}

[...]library C
{
 importlib (A.TLB)
 importlib (B.TLB)
 typedef struct tagBAR
 {FOO y;}BAR
}

The appropriate workaround for this is to qualify each such reference with the correct import library
name, like this:
typedef struct tagBAR
 {A.FOO y;}BAR

· VOID data type not recognized
MIDL recognizes the C-language void data type and does not recognize the OLE Automation VOID
data type. If you have an ODL file that uses VOID, place this definition at the top of the file:
#define VOID void

· Exponential notation
MIDL requires that values expressed in exponential notation be contained within quotation marks. For
example, "-2.5E+3".

· LCID values and constants
Normally MIDL does not consider the LCID when parsing files. To force this behavior for a value, or if
you need to use locale-specific notation when defining a constant, enclose the value or constant in
quotation marks.

See Also
/mktyplib203, /iid, Marshaling OLE Data Types

ODL Language Features in MIDL
The following topics list the Object Description Language (ODL) attributes, keywords, statements, and
directives that are now part of the Microsoft Interface Definition Language (MIDL).

ODL Attributes
appobject bindable
control default
defaultvalue displaybind
dllname dual
entry helpcontext
helpstring helpfile
hidden id
immediatebind in
lcid licensed
nonextensible odl
oleautomation optional
out
propget propput
propputref public
readonly requestedit
restricted retval
source uuid
vararg version

ODL Keywords, Statements, and Directives
coclass
dispinterface
enum
importlib
interface
library
module
struct
typedef
union

For information on how to marshal OLE Automation types, such as BSTR, VARIANT, and SAFEARRAY,
see Marshaling OLE Data Types.

Generating a Proxy DLL and a Type Library From a Single IDL File
You can use a single IDL file to generate both the proxy stubs and header files for marshaling code, and a
type library. You do this by defining an interface outside the library block and then referencing that
interface from inside the library block, as shown in this example:

//file: AllKnown.idl

[object, uuid(. . .), <other interface attributes>]
interface IKnown : IUnknown {
import "unknwn.idl"
<declarations, etc. for IKnown interface go here>
};

[<library attributes>]library KnownLibrary {

//reference interface IKnown:
interface IKnown;

//or create a new class:
 [<coclass attributes>] coclass KnowMore {
 interface IKnown;
 };
};

See Also

Marshaling OLE Data Types, Additional Files Required To Generate a Type Library

MIDL Command-Line Reference
This section contains reference information for each command-line switch and switch option recognized
by the Microsoft® RPC MIDL compiler. Switch entries are arranged in alphabetical order. The topic
General MIDL Command-line Syntax describes the general command-line syntax.

General MIDL Command-line Syntax
midl [switch [switch-options]] filename

switch

Specifies MIDL compiler command-line switches. Switches can appear in any sequence.
switch-options

Specifies options associated with switch. Valid options are described in the reference entry for each
MIDL compiler switch.

filename

Specifies the name of the IDL file. This file usually has the extension .IDL, but it can have any
extension or no extension.

Remarks
The MIDL compiler processes an IDL file and an optional ACF to generate a set of output files. The
attributes specified in the IDL file's interface attribute list determine whether the compiler generates
source files for an RPC interface or for a custom OLE interface. The following lists show the default
names of the files generated for an IDL file named name.IDL. You can use command-line switches to
override these default names. Note that the name of the IDL file can have no extension, or it can have an
extension other than .IDL.

By default (that is, if the interface attribute list does not contain the object or local attribute), the compiler
generates the following files for an RPC interface:

· Client stub (name_C.C)
· Server stub (name_S.C)
· Header file (name.H)

When the object attribute appears in the interface attribute list, the compiler generates the following files
for an OLE interface:

· Interface proxy file (name_P.C)
· Interface header file (name.H)
· Interface UUID file (name_I.C)

When the local attribute appears in the interface attribute list, the compiler generates only the interface
header file, name.H.

The MIDL compiler provided with Microsoft® RPC invokes the C preprocessor as needed to process the
IDL file. It does not automatically invoke the C compiler to compile generated files.

Note The MIDL compiler provided with Microsoft RPC uses a different command-line syntax than
the DCE IDL compiler uses.

The MIDL compiler switches /env, /server, /sstub, and /out affect the server stub file.

The Header File

The header file contains definitions of all the data types and operations declared in the IDL file. The
header file must be included by all application modules that call the defined operations, implement the
defined operations, or manipulate the defined types.

The MIDL compiler switches /header and /out affect the header file.

@ Response File Command
midl @response_file

response_file

Specifies the name of a response file. The response filename must immediately follow the @
character. No white space is allowed between the @ character and the response filename.

Examples
midl @midl.rsp

midl /pack 4 @midl1.rsp /env win32 @midl2.rsp itf.idl

Remarks

As an alternative to placing all the options associated with a switch on the command line, the MIDL
compiler accepts response files that contain switches and arguments.

A response file is a text file containing one or more MIDL compiler command-line options. Unlike a
command line, a response file allows multiple lines of options and filenames. This is important on systems
such as MS-DOS, which limit the number of characters in the command line.

Options in a response file are interpreted as if they are present at that place in the MIDL command line.

Each argument in a response file must begin and end on the same line. The backslash character ("\")
cannot be used to concatenate lines.

When it is part of a quoted string in the response file, the backslash character can only be used before
another backslash (\or before a double quotation mark character ("). When it is not part of a quoted string,
the backslash character can only be used before a double quotation mark character.

MIDL supports command-line arguments that include one or more response files combined with other
command-line switches.

The MIDL compiler does not support nested response files.

See Also
General MIDL Command-line Syntax

/acf
midl /acf acf_filename

acf_filename

Specifies the name of the ACF. White space may or may not be present between the /acf switch and
the filename.

Example
midl /acf bar.acf filename.idl

Remarks

The /acf switch allows the user to supply an explicit ACF filename. The switch also allows the use of
different interface names in the IDL and ACF files.

By default, the MIDL compiler constructs the name of the ACF by replacing the IDL filename extension
(usually .IDL) with .ACF. When the /acf switch is present, the ACF takes its name from the specified
filename. The /acf switch applies only to the IDL file specified on the MIDL compiler command line. It
does not apply to imported files.

When the /acf switch is used, the interface name in the ACF need not match the MIDL interface name.
This feature allows interfaces to share an ACF specification.

When an absolute path to an ACF is not specified, the MIDL compiler searches in the current directory,
directories supplied by the /I option, and directories in the INCLUDE path. If the ACF is not found, the
MIDL compiler assumes there is no ACF for this interface. For more information about the sequence of
directories, see /no_def_idir switches. For more information relating to /acf, see IDL.

See Also
General MIDL Command-line Syntax

/align
midl /align:alignment

alignment

Specifies the alignment for types in the library. The alignment value can be 1, 2, 4, or 8. The value 1
indicates natural alignment; n indicates alignment on byte n. When you do not specify the /align
switch, the default is 8.

Example
midl /align:4 filename.idl

Remarks

The /align switch is functionally the same as the MIDL /Zp option and is recognized by the MIDL compiler
solely for backward compatibility with MKTYPLIB. If you are generating a new makefile, use the /Zp
switch.

The alignment value corresponds to the /Zp option value used by the Microsoft C/C++ compiler.Be sure
that you specify the same alignment when you invoke the C compiler as when you invoke the MIDL
compiler. For more information, see your Microsoft C/C++ programming documentation.

For a discussion of the potential dangers in using nonstandard packing levels, see the /Zp help topic.

See Also
General MIDL Command-line Syntax, /Zp

/app_config
midl /app_config

Examples
midl /app_config filename.idl

Remarks

The /app_config switch selects application-configuration mode, which allows you to use some ACF
keywords in the IDL file. With this MIDL compiler switch, you can omit the ACF and specify an interface in
a single IDL file.

This release of Microsoft RPC supports the use of the following ACF attributes in the IDL file:

· implicit_handle
· auto_handle
· explicit_handle

Future releases of Microsoft RPC may support the use of other ACF attributes in the IDL file.

For more information related to the /app_config switch, see ACF and IDL.

See Also
General MIDL Command-line Syntax

/c_ext
midl /c_ext

This switch is obsolete with the current version (3.0) of the MIDL compiler. However, using the switch will
not generate a compiler error, so you do not have to remove references to /ms_ext or /c_ext from an
existing makefile.

The following features are now available by default:

· Many existing header files define types with qualifiers, such as far and stdcall, that are not part of the
DCE IDL. DCE IDL compilers (and the MIDL compiler in DCE-compatibility mode) generate errors
when they attempt to process these qualifiers. The MIDL compiler allows you to compile IDL files that
contain these qualifiers. The type qualifiers do not affect the way the data is transmitted on the
network.

· You can omit directional attributes (in, out).

The following C-language extensions are supported in default mode:

· Bit fields in structures and unions
· Comments that start with two slash characters ("//")
· External declarations
· Procedures with ellipses in the parameter list
· On 32-bit platforms, int is a native 32-bit base type. On 16-bit platforms, int is recognized but is not a

remotable type
· Type void * that is not used in remote operations
· Type qualifiers, including the form with the ANSI-conformant prefix, contain two underscore

characters: _ _cdecl, cdecl, _ _const, const, _ _export, export, _ _far, far, _ _loadds, loadds, _
_near, near, _ _pascal, pascal, _ _stdcall, stdcall, _ _volatile, and volatile.

For more information about declaration qualifiers, see your Microsoft C/C++ documentation.

See Also
/app_config, / osf , General MIDL Command-line Syntax

/caux
This switch is obsolete and, if used, results in an error.

/char
midl /char { signed | unsigned | ascii7 }

signed

Specifies that the default C-compiler type for char is signed. All occurrences of char not accompanied
by a sign specification are generated as unsigned char.

unsigned

Specifies that the default C-compiler type for char is unsigned. All uses of small not accompanied by
a sign specification are generated as signed small.

ascii7

Specifies that all char values are to be passed into the generated files without a specific sign
keyword. All uses of small not accompanied by a sign specification are generated as small.

Examples
midl /char signed filename.idl
midl /char unsigned filename.idl
midl /char ascii7 filename.idl

Remarks

The /char switch helps you ensure that the MIDL compiler and C compiler operate together correctly for
all char and small types. By definition, MIDL char is unsigned. Small is defined in terms of char (#define
small char), and MIDL small is signed.

The /char switch directs the MIDL compiler to specify explicit signed or unsigned declarations in the
generated files when the C-compiler sign declaration conflicts with the MIDL default for that type.

The following table summarizes the generated types:

midl /char option Generated char type Generated small type
midl /char signed unsigned char small
midl /char unsigned char signed small
midl /char ascii7 char small

The /char signed option indicates that the C-compiler char type is signed. To match the MIDL default for
char, the MIDL compiler must convert all uses of char not accompanied by a sign specification to
unsigned char. The small type is not modified because this C-compiler default matches the MIDL default
for small.

The /char unsigned option indicates that the C-compiler char type is unsigned. The MIDL compiler
converts all uses of small not accompanied by a sign specification to signed small.

The ascii7 option indicates that no explicit sign specification is added to char types. The type small is
generated as small.

To avoid confusion, you should use explicit sign specifications for char and small types whenever
possible in the IDL file. Note that the use of explicitly signed char types in your IDL file is not supported by
DCE IDL. Therefore, this feature is not available when you compile with the MIDL /osf switch.

For more information related to /char, see small.

See Also
char, General MIDL Command-line Syntax, / osf , small

/client
midl /client { stub | none }

stub

Generates the client-side files.
none

Does not generate any client-side files.

Examples
midl /client none filename.idl
midl /client stub filename.idl

Remarks

The /client switch directs the MIDL compiler to generate client-side C source files for an RPC interface.
When the /client switch is not specified, the MIDL compiler generates the client stub file. This switch does
not affect OLE interfaces.

The /client switch takes precedence over the /cstub switch.

See Also
/cstub, /server, General MIDL Command-line Syntax

/confirm
midl /confirm

Examples
midl /confirm
midl /confirm @response.rsp filename.idl

Remarks

The /confirm switch instructs the compiler to display all MIDL compiler options without processing the
input IDL (and optional ACF) files.

See Also
/help, General MIDL Command-line Syntax

/cpp_cmd
midl /cpp_cmd "C_preprocessor_command"

C_preprocessor_command

Specifies the command that invokes the C preprocessor. This command allows you to override the
default C preprocessor. By default, MIDL invokes the Microsoft C compiler for the build environment
you are using.

Examples
midl /cpp_cmd "cl386" /cpp_opt "/E" filename.idl
midl /cpp_cmd "mycpp" /DFLAG=TRUE /Ic:\tmp filename.idl
midl /cpp_opt "/E /DFLAG=TRUE" filename.idl

Remarks

The /cpp_cmd switch specifies the C-compiler preprocessor that the MIDL compiler uses to preprocess
the IDL and ACF files. When this switch is present, the C_preprocessor_command option is required.

When the specified C preprocessor does not direct its output to stdout, you must specify the C compiler
switch that redirects output to stdout as part of the MIDL compiler /cpp_opt switch.

The C preprocessor is invoked by a command string that is formed from the information provided to the
MIDL compiler /cpp_cmd, /cpp_opt, /D, /I, and /U switches. The following table summarizes how the
command string is constructed for each combination of /cpp_cmd and /cpp_opt switches:

/cpp_cmd
present?

/cpp_opt
present?

Description
Yes Yes Invokes specified C compiler with specified

options. You must supply /E as part of
/cpp_opt

Yes No Invokes specified C compiler with settings
obtained from MIDL /I, /D, /U switches. Adds
C compiler /E switch

No Yes Invokes Microsoft C compiler with specified
options. Does not use MIDL /I, /D, /U
options. You must supply /E as part of
/cpp_opt

No No Invokes Microsoft C compiler with /E option
only

When the /cpp_cmd switch is not specified, the MIDL compiler invokes the Microsoft C/C++ compiler for
that environment.

When the /cpp_opt switch is not present, the MIDL compiler concatenates the string specified by
the /cpp_cmd switch with the information specified by the MIDL /I, /D, and /U options. The string /E is
also concatenated to the C-compiler invocation string to indicate that the C compiler should perform
preprocessing only. The MIDL compiler uses the concatenated string to invoke the C preprocessor for
each IDL and ACF source file.

When the /cpp_opt switch is present, the MIDL compiler concatenates the string specified by the
/cpp_cmd switch with the string specified by the /cpp_opt switch. The MIDL compiler uses the

concatenated string to invoke the C preprocessor for each IDL and ACF source file. When the /cpp_opt
switch is present, neither the MIDL compiler options specified by the /I, /D, and /U switches nor the C
compiler switch /E is concatenated with the string. You must supply the /E option as part of the string.

See Also
/cpp_opt, General MIDL Command-line Syntax, /no_cpp

/cpp_opt
midl /cpp_opt "C_preprocessor_option"

C_preprocessor_option

Specifies a command-line option associated with the C preprocessor. You must supply the C-compiler
option /E as part of the C_preprocessor_option string.

Examples
midl /cpp_cmd "cl386" /cpp_opt "/E" filename.idl
midl /cpp_cmd "mycpp" /DFLAG=TRUE /Ic:\tmp filename.idl
midl /cpp_opt "/E /DFLAG=TRUE" filename.idl

Remarks

The /cpp_opt switch specifies options to pass to the C preprocessor. The /cpp_opt switch can be used
with or without the /cpp_cmd switch. The following table summarizes how the C-preprocessor command
string is constructed for each combination of /cpp_cmd and /cpp_opt switches:

/cpp_cmd
present?

/cpp_opt
present?

Description
Yes Yes Invokes specified C compiler with specified

options. You must supply /E as part of
/cpp_opt

Yes No Invokes specified C compiler with settings
obtained from MIDL /I, /D, /U switches. Adds
C-compiler /E switch

No Yes Invokes Microsoft C compiler with specified
options. Does not use MIDL /I, /D, /U
options. You must supply /E as part of
/cpp_opt

No No Invokes Microsoft C compiler with /E option
only

When the /cpp_cmd switch is present and the /cpp_opt switch is not, the MIDL compiler concatenates
the string specified by the cpp_cmd switch with the /I, /D, and /U options and uses this concatenated
string to invoke the C preprocessor for each IDL and ACF source file.

When the /cpp_cmd switch is not present, the preprocessor option is sent to the default C preprocessor.
When the /cpp_cmd switch is present, the preprocessor option is sent to the specified C preprocessor.

See Also
/cpp_cmd, General MIDL Command-line Syntax, /no_cpp

/cstub
midl /cstub stub_file_name

stub_file_name

Specifies a filename that overrides the default client stub filename. Filenames can be explicitly quoted
using double quotes (") to prevent the shell from interpreting the special characters.

Example
midl /cstub my_cstub.c filename.idl

Remarks

The /cstub switch specifies the name of the client stub file for an RPC interface. The specified filename
replaces the default filename. By default, the filename is obtained by adding the extension _C.C to the
name of the IDL file. This switch does not affect OLE interfaces.

When you are importing files, the specified filename applies to only one stub file ¾ the stub file that
corresponds to the IDL file specified on the command line.

If stub_file_name does not include an explicit path, the file is written to the current directory or the
directory specified by the /out switch. An explicit path in stub_file_name overrides the /out switch
specification.

The /client none switch takes precedence over the /cstub switch.

See Also
/header, General MIDL Command-line Syntax, /out, /sstub

/D
midl /D name=definition

name

Specifies a defined name that is passed to the C preprocessor when the /cpp_cmd switch is present
and the /cpp_opt switch is not present.

definition

Specifies a value associated with the defined name.

Example
midl -DUNICODE filename.idl

Remarks

The /D switch defines a name and an optional value to be passed to the C preprocessor as if by a
#define directive. Multiple /D directives can be used in a command line. White space between the /D
switch and the defined name is optional.

When the /cpp_cmd switch is present and the /cpp_opt switch is not, the MIDL compiler concatenates
the string specified by the /cpp_cmd switch with the /I, /D, and /U options and uses this concatenated
string to invoke the C preprocessor for each IDL and ACF source file.

The MIDL compiler switch /D is ignored when the MIDL compiler switch /no_cpp or /cpp_opt is specified.

See Also
/cpp_cmd, /cpp_opt, /I, General MIDL Command-line Syntax, /no_cpp, /U

/dlldata
midl /dlldata

Example
midl /dlldata data.c

Remarks

The /dlldata switch is used to specify the filename for the generated dlldata file for a proxy DLL. The
default filename "dlldata.c" is used if the /dlldata switch is not specified.

The dlldata file must be linked to the proxy DLL. The dlldata file contains entry points and data structures
required by the class factory for the proxy DLL. These data structures specify the object interfaces
contained in the proxy DLL. The dlldata file also specifies the class ID of the class factory for the proxy
DLL. This is always the UUID (IID) of the first interface of the first proxy file (by alphabetical order).

The same dlldata file should be specified when invoking MIDL on all the IDL files that will go into a
particular proxy DLL. The dlldata file is created or updated during each MIDL compilation, incrementally
building a list of the interfaces that will go into the proxy DLL.

See Also
General MIDL Command-line Syntax

/env
midl /env { dos | win16 | mac | win32 }

dos

Directs the MIDL compiler to generate stub files, or a type library file, for an MS-DOS environment.
win16

Directs the MIDL compiler to generate stub files, or a type library file, for the 16-bit Microsoft Windows
environment such as Microsoft Windows 3.x or Microsoft Windows for Workgroups 3.11.

mac

Directs the MIDL compiler to generate stub files, or a type library file, for the Apple® Macintosh®
(680x0) environment.

Note The MIDL compiler does not generate a server-stub file when you use the /env switch with the
dos, win16, or mac options.

win32

Directs the MIDL compiler to generate stub files, or a type library file, for a 32-bit Microsoft Windows
environment¾either Microsoft® Windows® 95 or Microsoft® Windows NT™.

Examples
midl /env dos filename.idl
midl /env win32 filename.idl

Remarks

The /env switch selects the environment in which the application runs. The /env switch primarily affects
the packing level used for structures in that environment.

Be sure you specify the same packing-level setting for both the MIDL compiler and the C compiler.

The /env switch determines the packing level and other settings as follows:

· When dos is specified, _ _far precedes pointer declarations in the generated header file, and the stub
files use packing-level 2 for all types involved in remote operations.

· When win16 is specified, _ _far precedes pointer declarations in the generated files, stub files use C-
compiler packing-level 2 for all types involved in remote operations, and _ _export is applied to
callback stubs on the client side. You must compile the stubs with the /GA option.

· When win32 is specified, generated stubs use C-compiler packing-level 8 for all types involved in
remote operations.

· When mac is specified, the stub files use packing level 2 for all types involved in remote operations.
The mac environment does not support object interfaces.

The /align, /pack, and /Zp switches take precedence over the /env settings.

See Also
General MIDL Command-line Syntax, /pack, /Zp

/error
midl /error { allocation | stub_data | ref | bounds_check | none | all }

allocation

Checks whether midl_user_allocate returns a null value, indicating an out-of-memory error.
stub_data

Generates a stub that catches unmarshalling exceptions on the server side and propogates them
back to the client.

ref

Generates code that checks at run time to ensure that no NULL [ref] pointers are being passed to the
client stubs and raises an RPC_X_NULL_REF_POINTER exception if it finds any.

bounds_check

Checks size of conformant-varying and varying arrays against transmission length specification.
none

Performs no error checking.
all

Performs all error checking.

Examples
midl /error allocation filename.idl
midl /error none filename.idl

Remarks

The /error switch selects the amount of error checking to be performed by the generated stub files.

By default, the MIDL compiler generates code that checks for enum and certain memory-access errors.
The enum errors that are checked are truncation errors caused by conversion between long enum types
(32-bit integers) and short enum types (the network-data representation of enum) and the number of
identifiers in an enumeration exceeding 32,767. The memory-access error checking is for pointers that
exceed the end of the buffer in marshalling code and for conformant arrrays whose size is less than zero.
Use the /error bounds_check flag to check for other invalid array bounds.

When you specify /error allocate, the stubs include code that raises an exception when
midl_user_allocate returns 0.

The /error stub_data option prevents client data from crashing the server during unmarshalling; in effect
providing a more robust method of handling the unmarshalling operation.

See Also
General MIDL Command-line Syntax

/h
midl /h filename

filename

Specifies a header filename that overrides the default header filename. Filenames can be explicitly
quoted using double quotes (") to prevent the shell from interpreting special characters.

Examples
midl /h tlibhead.h filename.idl
midl /h "midl.h" filename.idl

Remarks

The /h option is functionally equivalent to the /header option. The /h switch specifies filename as the
name for a header file that contains all the definitions contained in the IDL file, without the IDL syntax.
This file can be used as a C or C++ header file.

See Also
General MIDL Command-line Syntax, /header

/header
midl /header filename

filename

Specifies a header filename that overrides the default header filename. Filenames can be explicitly
quoted using double quotes (") to prevent the shell from interpreting special characters.

Example
midl /header "bar.h" filename.idl

Remarks

The /header switch specifies the name of the header file. The specified filename replaces the default
filename. The default filename is obtained by replacing the IDL file extension (usually .IDL) with the
extension .H. For OLE interfaces, the /header switch overrides the default name of the interface header
file.

When you are importing files, the specified filename applies to only one header file ¾ the header file that
corresponds to the IDL file specified on the command line.

If filename does not include an explicit path, the file is written to the current directory or the directory
specified by the /out switch. An explicit path in filename overrides the /out switch specification.

See Also
General MIDL Command-line Syntax, /h, /cstub, /out, /sstub, /proxy

/help (/?)
midl /help

midl /?

Example
midl /help

Remarks

The /help (/?) switch instructs the compiler to display a usage message detailing all available MIDL
command-line switches and options.

The /confirm switch displays the MIDL compiler switch settings selected by the user.

See Also
General MIDL Command-line Syntax, /confirm

/I
midl /I include_path

include_path

Specifies one or more directories that contain import, include, and ACF files. White space between
the /I switch and include_path is optional. Separate multiple directories with a semicolon character (;).

Example
midl /I c:\include;c:\include\h /I\include2 filename.idl

Remarks

The /I switch specifies directories to be searched for imported IDL files, included header files, and ACF
files. More than one directory can appear with each /I switch, and more than one /I switch can appear with
each MIDL compiler invocation. Directories are searched in the order they are specified.

The /I switch setting is also passed by the MIDL compiler to the C compiler's C preprocessor. When the
/cpp_cmd switch is present and the /cpp_opt switch is not, the MIDL compiler concatenates the string
specified by the /cpp_cmd switch with the /I, /D, and /U options and uses this concatenated string to
invoke the C preprocessor for each IDL and ACF source file. The MIDL compiler switch /I is not passed to
the preprocessor when the MIDL compiler switch /no_cpp or /cpp_opt is specified.

In Microsoft operating-system environments (32-bit Windows, 16-bit Windows, and MS-DOS), directories
are searched in the following sequence:

1. Current directory.
2. Directories specified by the /I switch (in order as they appear following the switch).
3. Directories specified by the INCLUDE environment variable.

When directories are specified with the /I switch, the /no_def_idir switch instructs the MIDL compiler to
ignore the current directory, ignore the directories specified by the INCLUDE environment variable, and
search only the specified directories.

When no directories are specified with the /I switch, the /no_def_idir switch instructs the MIDL compiler
to search only the current directory.

See Also
General MIDL Command-line Syntax, /acf, /cpp_cmd, /cpp_opt, /no_def_idir

/iid
midl /iid filename

filename

Specifies an interface identifier filename that overrides the default interface identifier filename for an
OLE interface. Filenames can be explicitly quoted using double quotes (") to prevent the shell from
interpreting the special characters.

Example
midl /iid "foo_iid.c" filename.idl

Remarks

The /iid switch specifies the name of the interface identifier file for an OLE interface, overriding the default
name obtained by adding _I.C to the IDL filename. The /iid switch does not affect RPC interfaces.

If filename does not include an explicit path, the file is written to the current directory or to the directory
specified by the /out switch. An explicit path in filename overrides the /out switch specification.

See Also
General MIDL Command-line Syntax, /header, /out, /proxy

/import
This switch is obsolete and, if used, results in an error.

/mktyplib203
midl /mktyplib203

Examples
midl /mktyplib203 myoldodl.odl
midl /mktyplib203 oldhabit.idl

Remarks

The /mktyplib203 switch forces the MIDL compiler to parse the input file in much the same manner as
MKTYPLIB.EXE, version 2.03, would handle the file. In order to use this switch, the input file must follow
the ODL syntax exactly ¾ you cannot place any statements outside of the library block. Specifically, using
the /mktyplib203 switch resolves the following discrepancies between MKTYPLIB and MIDL:

· MKTYPLIB typdef syntax is required for struct, union and enum data types.
· GUIDs in the header files are defined with a macro that can be conditionally compiled to generate

either a GUID predefinition or an instantiated GUID.
· The base type BOOL is represented as a VARIANT_BOOL, which is defined as a short.

See Differences Between MIDL and MKTYPLIB for a more detailed description of these differences.

There is only one discrepancy betweey MKTYPLIB.EXE and MIDL 3.0 that using the /mktyplib203 switch
will not resolve and that is the scope of symbols in an enum declaration. In MKTYPLIB, these symbols
have local scope; in MIDL 3.0 they have global scope. For example, the following code will generate a
duplicate name error in MIDL:

typedef struct {. . . } a;
enum { a=1, b=2, c=3};

See Also

General MIDL Command-line Syntax, Generating a Type Library With MIDL, Differences Between MIDL
and MKTYPLIB

/ms_ext
midl /ms_ext

Effective with MIDL version 3.0, the features enabled by this switch are now the default mode for the
MIDL compiler. Using the switch will not generate a compiler error, so you do not have to remove
references to /ms_ext or /c_ext from an existing makefile.

The following Microsoft extensions to OSF DCE are now available by default:

· Interface definitions for OLE objects. For more information on the files generated for OLE interfaces,
see Files Generated for an OLE Interface.

· A callback attribute specifying a static callback function on the client.
· cpp_quote(quoted_string) and #pragma midl_echo
· wchar_t wide-character types, constants, and strings
· enum initialization (sparse enumerators)
· Expressions as size and discriminator specifiers.
· Handle extensions.
· Pointer-attribute type inheritance.
· Multiple interfaces.
· Definitions outside of the interface block.
· You can omit directional attributes (in, out).

See Also
General MIDL Command-line Syntax, Pointer-Attribute Type Inheritance, /app_config, / osf

/ms_union
midl /ms_union

Example
midl /ms_union file.idl

Remarks

The /ms_union switch controls the NDR alignment of nonencapsulated unions.

The MIDL compiler mirrors the behavior of the OSF-DCE IDL compiler for nonencapsulated unions.
However, because earlier versions of the MIDL compiler did not do so, the /ms_union switch provides
compatibility with interfaces built on previous versions of the MIDL compiler.

The ms_union feature can be used as a command line switch (/ms_union), an IDL interface attribute, or
as an IDL type attribute.

See Also
General MIDL Command-line Syntax, IDL, ms_union

/new
midl /new

Examples
midl /new filename.idl
midl filename.idl
Remarks

This is the default setting for choosing a type library format. Effective with Windows NT 4.0, there is a new
version of OLEAUT32.DLL that supports a richer format for 32-bit type libraries. MIDL looks for this DLL
on the build machine; if the new version is present, MIDL generates a new-format type library, otherwise it
generates an old-format type library. Thus, if the new OLEAUT32.DLL is present, this switch does
nothing. If the new OLEAUT32.DLL is not present, specifying this switch in the MIDL command line will
generate an error.

See Also
General MIDL Command-line Syntax, /old

/no_cpp
midl /no_cpp

Example
midl /no_cpp filename.idl

Remarks

The /no_cpp switch specifies that the MIDL compiler does not call the C preprocessor to preprocess the
IDL file.

The /no_cpp switch takes precedence over the /cpp_cmd and /cpp_opt switches.

See Also
General MIDL Command-line Syntax, /cpp_cmd, /cpp_opt, /D, /I, /U

/no_default_epv
midl /no_default_epv

Example
midl /no_default_epv filename.idl

Remarks

The /no_default_epv switch directs the MIDL compiler not to generate a default entry-point vector (epv).
In this case, the application must register an epv with the RpcServerRegisterIf call. Compare this switch
with the /use_epv switch described earlier in this chapter.

See Also
General MIDL Command-line Syntax, IDL, / use_epv , RpcServerRegisterIf

/no_def_idir
midl /no_def_idir

Examples
; search only the current directory
midl /no_def_idir filename.idl
; search only the specified directories
midl /no_def_idir /I c:\c700\include filename.idl

Remarks

When directories are specified with the /I switch, the /no_def_idir switch instructs the MIDL compiler to
search only the directories specified with the /I switch, ignoring the current directory and ignoring the
directories specified by the INCLUDE environment variable.

When no directories are specified with the /I switch, the /no_def_idir switch instructs the MIDL compiler
to search only the current directory.

See Also
General MIDL Command-line Syntax, /acf, /I

/nologo
midl /nologo

Remarks
Disables the display of the copyright banner.

See Also
General MIDL Command-line Syntax

/no_warn
midl /no_warn

Examples
midl /no_warn filename.idl
midl /W0 filename.idl

Remarks

The /no_warn switch directs the MIDL compiler to suppress warning messages. The use of the /no_warn
switch is equivalent to /W0.

See Also
General MIDL Command-line Syntax, /W, /WX

/o
midl /o outputfile

outputfile

Specifies a filename for the MIDL compiler to redirect output (error messages and warnings) to.

See Also
General MIDL Command-line Syntax

/Oi
midl /{Oi | Oic | Oif | Oicf}

/Oi

Specifies the fully-interpreted method for marshalling stub code passed between client and server.
/Oic

Specifies the codeless proxy method of marshaling that provides all the features of /Oi and also
further reduces the size of the client stub code for object interfaces.

/Oif or /Oicf

Specifies the codeless proxy method of marshaling that includes all the features provided by /Oi and
/Oic but uses a new interpreter ("fast format strings") that provides better performance than /Oi or
/Oic.

Please note the restrictions related to supporting platforms, below.

Examples
midl /Oi filename.idl
midl /Oic filename.idl
midl /Oif filename.idl

Remarks

The MIDL 3.0 compiler provides two methods for marshalling code: fully-interpreted (/Oi, /Oic and /Oif)
and mixed-mode (/Os). Mixed-mode is the default. Some language features are not supported in some
modes. In this case, the compiler automatically switches to the appropriate mode and issues a warning.

If performance is a concern, the mixed-mode (/Os) method can be the best approach. In this mode, the
compiler chooses to marshall some parameters inline in the generated stubs. While this results in larger
stub size, it offers increased performance.

The fully-interpreted method marshals data completely offline. This considerably reduces the size of the
stub code, but results in decreased performance. Also, with the fully-interpreted method, there is a limit of
16 parameters for each procedure. Any procedure containing more than 16 parameters will automatically
be processed in /Os mode. Among the interpreted modes, /Oif offers the best performance and /Oi offers
the best backward compatibility.

If your application uses OLE object interfaces and if it will never run on a version of Microsoft Windows
NT earlier than 3.51, you can reduce the size of your client stub code for object interfaces by using the
/Oic option. With this option the MIDL compiler does not generate any client-side stub code. Since object
interface calls are through vtable pointers, the compiler generates the proper vtable structures and the
application calls the stubs through them.

If your application will be run only on Microsoft Windows NT 4.0 or later, you can use the faster /Oif
option. Specifically, you may want to use the /Oif option if your application uses MIDL features that were
introduced with MIDL 3.0, such as the wire_marshal and user_marshal attributes. If your application
uses pipes you must use the /Oif option; if you specify another mode, the MIDL compiler will switch
to /Oif.

To fine-tune the way your stub code is marshalled, Microsoft RPC provides an ACF optimize attribute.
This attribute is used as an interface attribute or operation attribute to select the marshalling mode for
individual interfaces or for individual operations.

Calling Conventions
Stubs generated by the MIDL compiler in the interpreted method using the /Oi, /Oic, or /Oif switches must
be compiled as either a stdcall or a cdecl procedure during the C compilation. A PASCAL or Fastcall
calling convention will not work. Additionally, the server stub must be compiled as stdcall.

Supporting Platforms
/Oi is supported on Windows NT 3.5 or later and Windows 95
/Oic is supported on Windows NT 3.51 or later and Windows 95
/Oif is supported on Windows NT 4.0.

See Also
General MIDL Command-line Syntax, /Os, optimize

/old
midl /old

Examples
midl /old filename.idl
midl /old myoldodl.odl
Remarks

The /old switch determines the format of MIDL-generated type libraries.

Effective with Windows NT 4.0, there is a new version of OLEAUT32.DLL that supports a richer format for
32-bit type libraries. MIDL looks for this DLL on the build machine; if the new version is present, MIDL
generates a new-format type library. Otherwise, it generates an old-format type library. The /old switch
overrides this default and directs the MIDL compiler to generate old-format type libraries even if the newer
version of OLEAUT32.DLL is present.

See Also
General MIDL Command-line Syntax

/oldnames
midl /oldnames

Example
midl /oldnames filename.idl

Remarks

The /oldnames switch directs the MIDL compiler to generate interface names which do not include the
version number.

The MIDL 2.0 compiler incorporates the version number of the interface into the interface name that is
generated in the stub (for example, foo_v1_0_ServerIfHandle). This naming format is consistent with the
format used by the OSF DCE IDL compiler. However, it differs from the naming format used by the MIDL
1.0 compiler. The MIDL 1.0 compiler did not include version numbers in interface names (for example,
foo_ServerIfHandle). The /oldnames switch allows you to instruct the MIDL compiler to generate
interface names which do not include the version number. In this way, the format is consistent with names
generated by the MIDL 1.0 compiler.

If you have server application code that was written for use with a stub generated by the MIDL 1.0
compiler and it refers to the MIDL-generated interface name (for example, in a call to
RpcServerRegisterIf), you must either change it to reference the MIDL 2.0 style of interface name or use
the /oldnames switch when invoking the MIDL compiler.

See Also
General MIDL Command-line Syntax, IDL

/Os
midl /Os

Examples
midl /Os filename.idl

Remarks

The /Os switch specifies the mixed-mode method to marshal stub code passed between client and
server.

There are important issues to consider before deciding on the method for marshalling code. These issues
concern size and performance. The MIDL 2.0 compiler provides two methods for marshalling code:
mixed-mode (/Os) and fully-interpreted (/Oi). The fully-interpreted method marshals data completely
offline. This reduces the size of the stub code considerably, but it also results in decreased performance.

If performance is an important concern, the mixed-mode method (/Os) can be the best approach. In this
mode, the compiler marshals some parameters inline in the generated stubs. While this results in larger
stub size, it also offers increased performance. Because mixed-mode is the default, you do not need to
explicitly select the /Os switch to accomplish mixed-mode marshalling.

To further define the level of gradiation in how data is marshalled, this version of RPC provides an
optimize attribute. This attribute is used as an ACF interface attribute or operation attribute to select the
marshalling mode.

See Also
General MIDL Command-line Syntax, /Oi, optimize

/osf
midl /osf

Examples
midl /osf filename.idl
midl /osf /app_config filename.idl

Remarks

The /osf switch forces strict compatibility with OSF DCE. Use this switch if your application requires strict
compatibility with OSF DCE for portability reasons.

In /osf mode, the Rpcss package is automatically enabled when you use full pointers, the arguments
require memory allocation, or when you use the enable_allocate attribute. This means that you do not
have to supply the midl_user_allocate and midl_user_free functions in your client and server
application.

The following Microsoft-extended features are not available when you compile with the /osf switch:

· Abstract declarators (unnamed parameters) in the IDL file.
· Interface definitions for OLE objects.
· MIDL-only attributes, such as wire_marshal, user_marshal, and the typelib (ODL)extensions.
· Using ACF keywords in an IDL file.
· Static callback functions on the client.
· cpp_quote(quoted_string) and #pragma midl_echo.
· wchar_t wide-character types, constants, and strings.
· enum initialization (sparse enumerators).
· [out] -only size specification.
· Mixed sized-pointers and sized arrays.
· Expressions used for size and discriminator specifiers.
· Explicit handle parameters in any position in the argument list. In /osf mode, the MIDL compiler looks

for an explicit binding handle as the first parameter. When the first parameter is not a binding handle
and one or more context handles are specified, the leftmost context handle is used as the binding
handle. When the first parameter is not a handle and there are no context handles, the procedure
uses implicit binding using the ACF attribute implicit_handle or auto_handle.

· Pointer-attribute type inheritance. OSF DCE does not allow unattributed pointers. Therefore, in /osf
mode each IDL file must define attributes for its pointers. If any pointer does not have an explicit
attribute, the IDL file must have a pointer_default specification to set the pointer type.

· Multiple interfaces in an IDL file.
· Definitions outside of the interface block.
· Type qualifiers such as far and stdcall.
· Omitting directional attributes.

The following C/C++ language extensions are not available when you compile with the /osf switch:

· Bit fields in structures and unions.
· Single line comments delimited with two slash characters (//).
· External declarations.
· Procedures with ellipses in the parameter list.

· Type int.
· Type void * (except with the context_handle attribute).
· Type qualifiers, including the form with the ANSI-conformant prefix, contain two underscore

characters: _ _cdecl, cdecl, _ _const, const, _ _export, export, _ _far, far, _ _loadds, loadds, _
_near, near, _ _pascal, pascal, _ _stdcall, stdcall, _ _volatile, and volatile.

See Also
General MIDL Command-line Syntax, /app_config, /ms_ext, Rpcss Memory Management Model

/out
midl /out path-specification

path-specification

Specifies the path to the directory in which the stub, header, and switch files are generated. A drive
specification, an absolute directory path, or both can be specified. Paths can be explicitly quoted
using double quotes (") to prevent the shell from interpreting the special characters.

Examples
midl /out c:\mydir\mysubdir\subdir2 deeper filename.idl
midl /out c: filename.idl
midl /out \mydir\mysubdir\another filename.idl

Remarks

The /out switch specifies the default directory where the MIDL compiler writes output files. The output
directory can be specified with a drive letter, an absolute path name, or both. The /out option can be used
with any of the switches that enable individual output file specification.

When the /out switch is not specified, files are written to the current directory.

The default directory specified by the /out switch can be overridden by an explicit path name specified as
part of the /cstub, /header, /proxy, or /sstub switch.

See Also
General MIDL Command-line Syntax, /cstub, /header, /proxy, /sstub

/pack
midl /pack packing_level

packing_level

Specifies the packing level of structures in the target system. The packing-level value can be set to 1,
2, 4, or 8.

Examples
midl /pack 2 filename.idl
midl /pack 8 bar.idl

Remarks

The /pack switch is the same as the /Zp option. The /pack switch designates the packing level of
structures in the target system. The packing-level value corresponds to the /Zp option value used by the
Microsoft C/C++ version 7.0 compiler. For more information, see your Microsoft C/C++ programming
documentation.

Specify the same packing level when you invoke the MIDL compiler and the C compiler. The default is 8.

For a discussion of the potential dangers in using nonstandard packing levels, see the /Zp help topic.

See Also
General MIDL Command-line Syntax, /env, /Zp

/prefix
midl /prefix { client | server | switch | all }

client

Affects only the client stub routine names.
server

Affects only the routine names called by the server stub routine.
switch

Affects an extra prototype added to the header file.
all

Affects both the client and server stub routine names.

Examples
midl /prefix client "c_" server "s_"
midl /prefix all "foo_"
midl /prefix client "bar_"

Remarks

The /prefix switch directs the MIDL compiler to add prefix strings to the client and/or server stub routine
names. This can be used to allow a single program to be both a client and server of the same interface,
without having the client- and server-side routine names conflict with each other. If the prefix for the client-
side routines is different from the prefix for the server-side routines, the generated header file will have
both client-side routine prototypes and server-side routine prototypes.

The /prefix switch is useful when a single header file will be used with stubs from multiple runs of the
MIDL compiler. This forces additional routine prototypes in the header file.

In all cases, the client, server, and switch prefixes will override an all prefix.

See Also
General MIDL Command-line Syntax

/proxy
midl /proxy proxy_file_name

proxy_file_name

Specifies a filename that overrides the default interface proxy filename. Filenames can be explicitly
quoted using double quotes (") to prevent the shell from interpreting the special characters.

Example
midl /proxy my_proxy.c filename.idl

Remarks

The /proxy switch specifies the name of the interface proxy file for an OLE interface. The specified
filename replaces the default filename obtained by adding _P.C to the name of the IDL file. The /proxy
switch does not affect RPC interfaces.

If proxy_file_name does not include an explicit path, the file is written to the current directory or to the
directory specified by the /out switch. An explicit path in proxy_file_name overrides the /out switch
specification.

For a more detailed description of the interface proxy file and other files generated by the MIDL compiler,
see General MIDL Command-line Syntax.

See Also
General MIDL Command-line Syntax, /header, /iid, /out

/rpcss
midl /rpcss

Example
midl /rpcss filename.idl

Remarks

The /rpcss switch, when specified, acts as though the enable_allocate attribute was specified on all
operations of the interface. In the default mode of operation, the rpcss package is enabled only if either
the procedure or interface has the enable_allocate attribute or the /rpcss switch is specified on the
command line. In /osf mode, the server side stub enables the rpcss allocation package.

See Also
General MIDL Command-line Syntax, IDL, enable_allocate, / osf

/saux
This switch is obsolete and, if used, results in an error.

/server
midl /server { stub | none }

stub

Generates the server-side files.
none

Does not generate server-side files.

Examples
midl /server none
midl /server stub

Remarks

When the /server switch is not specified, the MIDL compiler generates the server stub file. This switch
does not affect OLE interfaces.

The none option causes no files to be generated.

The /server switch takes precedence over the /sstub switch.

See Also
General MIDL Command-line Syntax, /client, /sstub

/sstub
midl /sstub stub_file_name

stub_file_name

Specifies a filename that overrides the default server stub filename. Filenames can be explicitly
quoted using double quotes (") to prevent the shell from interpreting the special characters.

Example
midl /sstub my_sstub.c filename.idl

Remarks

The /sstub switch specifies the name of the server stub file for an RPC interface. The specified filename
replaces the default filename. By default, the filename is obtained by adding _S.C to the name of the IDL
file. This switch does not affect OLE interfaces.

When you are importing files, the specified filename applies to only one stub file ¾ the stub file that
corresponds to the IDL file specified on the command line.

If stub_file_name does not include an explicit path, the file is written to the current directory or the
directory specified by the /out switch. An explicit path in stub_file_name overrides the /out switch
specification.

The /server none switch takes precedence over the /sstub switch.

See Also
General MIDL Command-line Syntax, /cstub, /header, /out

/syntax_check
midl /syntax_check

midl /Zs

Examples
midl /Zs filename.idl
midl /syntax_check filename.idl

Remarks

The /syntax_check switch indicates that the compiler checks only syntax and does not generate output
files. This switch overrides all other switches that specify information about output files.

You can also specify syntax-checking mode with the MIDL compiler option /Zs.

See Also
General MIDL Command-line Syntax, /Zs

/<system>
midl /<system> where <system> is one of: /win16 /win32 /mac /mips

 /alpha /ppc /ppc32

Example
midl /alpha filename.idl

Remarks

Directs the MIDL compiler to generate a type library for the specified system.The default is the current
operating system. The /mac switch directs MIDL to generate a type library for a 680x0-based Apple
Macintosh system.

The /<system> switch is functionally the same as the MIDL /env option and is recognized by the MIDL
compiler solely for backward compatibility with MKTYPLIB. If you are generating a new makefile, use
the /env switch.

See Also
General MIDL Command-line Syntax, /env

/tlb
midl /tlb filename

filename

Specifies filename as the name of the output type library (TLB) file. By default, if the /tlb switch is not
used, the TLB file has the same name as the IDL file, with the extension .TLB.

Example
midl /tlb newname.tlb

See Also

General MIDL Command-line Syntax

/U
midl /Uname

name

Specifies a defined name to be passed to the C preprocessor as if by a #undefine directive. The
name is predefined by the C preprocessor or previously defined by the user.

Example
midl /UUNICODE filename.idl

Remarks

The /U switch removes any previous definition of a name by passing the name to the C preprocessor as if
by a #undefine directive. Multiple /U directives can be used in a command line. White space between the
/U switch and the undefined name is optional.

When the /cpp_cmd switch is present and the /cpp_opt switch is not, the MIDL compiler concatenates
the string specified by the /cpp_cmd switch with the /I, /D, and /U options and uses this concatenated
string to invoke the C preprocessor for each IDL and ACF source file. The MIDL compiler switch /U is
ignored when the MIDL compiler switch /no_cpp or /cpp_opt is specified.

See Also
General MIDL Command-line Syntax, /cpp_cmd, /cpp_opt, /D, /I, /no_cpp

/use_epv
midl /use_epv

Example
midl /use_epv filename.idl

Remarks

The /use_epv switch directs the MIDL compiler to generate server stub code that calls the server
application routine through an entry-point vector (epv), rather than by a static call.

Typically, applications require static linkage to the server application routine. The MIDL compiler
generates such a call by default. However, if an application requires the server stub to call the server
application routine by using the epv, the /use_epv switch must be specified. When the /use_epv switch is
specified, the MIDL compiler generates a default epv. This default epv is then used if the application does
not register another epv through the RpcServerRegisterIf call.

See Also
General MIDL Command-line Syntax, IDL, /no_default_epv, RpcServerRegisterIf

/W
midl /Wlevel

level

Specifies the warning level, an integer in the range 0 through 4. There is no space between the /W
switch and the digit indicating the warning-level value.

Examples
midl /W2 filename.idl
midl /W4 bar.idl

Remarks

The /W switch specifies the warning level of the MIDL compiler. The warning level indicates the severity of
the warning. Warning levels range from 1 to 4, with a value of zero meaning to display no warning
information. The highest-severity warning is level 1. The following table describes the warnings for each
warning level:

Warning levelDescription Example
W0 No warnings.
W1 Severe warnings that can

cause application errors.
No binding handle specified,
unattributed pointers,
conflicting switches.

W2 May cause problems in
the user's operating
environment.

Identifier length exceeds 31
characters. No default union
arm specified.

W3 Reserved.
W4 Lowest warning level. Non-ANSI C constructs.

Warnings are different from errors. Errors cause the MIDL compiler to halt processing of the IDL file.
Warnings cause the MIDL compiler to emit an informational message and continue processing the IDL
file.

The warning level set by the /W switch can be used with the /WX switch to cause the MIDL compiler to
halt processing of the IDL file.

The /W switch behaves the same as the /warn switch.

See Also
General MIDL Command-line Syntax, /warn

/warn
midl /warnlevel

level

Specifies the warning level, an integer in the range 0 through 4. There is no space between the /warn
switch and the digit indicating the warning-level value.

Examples
midl /warn2 filename.idl
midl /warn4 bar.idl

Remarks

The /warn switch specifies the warning level of the MIDL compiler. The warning level indicates the
severity of the warning. Warning levels range from 1 to 4, with a value of zero meaning to display no
warning information. The highest severity warning is level 1. The following table describes the warnings
for each warning level:

Warning levelDescription Example
0 No warnings.
1 Severe warnings that can

cause application errors.
No binding handle specified,
unattributed pointers,
conflicting switches.

2 May cause problems in
the user's operating
environment.

Identifier length exceeds 31
characters. No default union
arm specified.

3 Reserved.
4 Lowest warning level. Non-ANSI C constructs.

Warnings are different from errors. Errors cause the MIDL compiler to halt processing of the IDL file.
Warnings cause the MIDL compiler to emit an informational message and continue processing the IDL
file.

The warning level set by the /warn switch can be used with the WX switch to cause the MIDL compiler to
halt processing of the IDL file.

The /warn switch behaves the same as the /W switch.

See Also
General MIDL Command-line Syntax

/WX
midl /WX

Examples
midl /WX filename.idl
midl /W3 /WX filename.idl

Remarks

The /WX switch instructs the MIDL compiler to handle all errors at the given warning level as errors. If the
/WX switch is specified and the /Wn switch is not specified, all warnings at the default level, level 1, are
treated as errors.

The /Wn switch directs the compiler to display all warnings at level n and /WX directs the compiler to
handle all warnings as errors. The combination of these two switches directs the compiler to handle all
warnings at level n as errors.

Errors are different from warnings. Errors cause the MIDL compiler to halt processing of the IDL file.
Warnings cause the MIDL compiler to emit an informational message and continue processing the IDL
file.

Warning-level zero (0) directs the MIDL compiler to suppress warning information. When the /W0 and
/WX switches are combined, the MIDL compiler suppresses all warning information. In this case, the /WX
switch has no effect.

See Also
General MIDL Command-line Syntax, /W

/Zp
midl /Zppacking_level

packing_level

Specifies the packing level of structures in the target system. The packing-level value can be set to 1,
2, 4, or 8.

Example
midl /Zp4 filename.idl

Remarks

The /Zp switch is the same as the /pack option.

The /Zp switch designates the packing level of structures in the target system. The packing-level value
corresponds to the /Zp option value used by the Microsoft C/C++ compiler. For more information, see
your Microsoft C/C++ programming documentation.

Specify the same packing level when you invoke the MIDL compiler and the C compiler.

The default packing level used when you do not specify the /Zp or /pack switch is 8.

Note Do not use /Zp1 or /Zp2 on MIPS or Alpha platforms and do not use /Zp4 or /Zp8 on 16-bit
platforms. Depending on the data type and memory location assigned by the C compiler at run time,
this can result in a data misalignment exception on MIPS and Alpha platforms. On MS-DOS
platforms, the C compiler will not ensure the alignment at 4 or 8, and so the application may
terminate.

See Also
General MIDL Command-line Syntax, /pack

/Zs
midl /Zs

midl /syntax_check

Examples
midl /Zs filename.idl
midl /syntax_check filename.idl

Remarks

The /Zs switch indicates that the compiler only checks syntax and does not generate output files.

This switch overrides all other switches that specify information about output files.

You can also specify syntax-checking mode with the MIDL compiler switch /syntax_check.

See Also
General MIDL Command-line Syntax, /syntax_check

MIDL Language Reference
This section provides a reference entry for each keyword in the Microsoft® Interface Definition Language
(MIDL). Reference entries are also included for important language productions and concepts.

The reference entries are arranged in alphabetical order and each entry includes syntax, examples,
descriptions, and cross-references. To examine the top-level structure of these files, start with the topics
ACF and IDL.

ACF
[interface-attribute-list] interface interface-name

{
[include filename-list ; ...]
[typedef [type-attribute-list] typename; ...]

[[[function-attribute-list]] function-name(
[[[parameter-attribute-list]] parameter-name]
...

);
]
...

}

interface-attribute-list

Specifies a list of one or more attributes that apply to the interface as a whole. Valid attributes include
auto_handle, implicit_handle, explicit_handle, and optimize, code, or nocode. When two or more
interface attributes are present, they must be separated by commas.

interface-name

Specifies the name of the interface. In DCE-compatibility mode, the interface name must match the
name of the interface specified in the IDL file. When you use the MIDL compiler switch /acf, the
interface name in the ACF and the interface name in the IDL file can be different.

filename-list

Specifies a list of one or more C-language header filenames, separated by commas. The full
filename, including the extension, must be supplied.

type-attribute-list

Specifies a list of one or more attributes, separated by commas, that apply to the specified type. Valid
type attributes include allocate or represent_as.

typename

Specifies a type defined in the IDL file. Type attributes in the ACF can only be applied to types
previously defined in the IDL file.

function-attribute-list

Specifies a list of one or more attributes, separated by commas, that apply to the function-return type.
Valid function attributes include allocate, optimize, call_as, code or nocode.

function-name

Specifies the name of the function in the IDL file.
parameter-attribute-list

Specifies a list of zero or more attributes, separated by commas, that apply to the specified
parameter. Valid parameter attributes include byte_count.

parameter-name

Specifies the name of the parameter in the IDL file. Only the name of the parameter must match the
IDL file specification. The sequence of parameters is not significant.

Examples
/* example 1 */
[auto_handle] interface foo1 { }

/* example 2 */
[implicit_handle(handle_t h), code] interface foo2 {}

/* example 3 */
[code]
interface foo3;
{
 include "foo3a.h", "foo3b.h";
 typedef [allocate(all_nodes)] TREETYPE1;
 typedef [allocate(all_nodes, dont_free)] TREETYPE2;
 f1([byte_count(length)] pBuffer);
}

Remarks

The application configuration file, or ACF, is one of two files that define the interface for your distributed
application. The second interface-defining file is the IDL file. The IDL file contains type definitions and
function prototypes that describe how data is transmitted on the network. The ACF configures your
application for a particular operating environment without affecting its network characteristics.

By using the IDL and ACF files, you separate the interface specification from environment-specific
settings. The IDL file is meant to be portable to any other computer. When you move your distributed
application to another computer, you should be able to reuse the IDL file. Environment-specific changes
are made in the ACF.

Many distributed applications require no special configuration. For such applications, use the MIDL
compiler switch /app_config to supply the ACF keywords auto_handle and implicit_handle in the IDL
file and omit the ACF.

The ACF corresponds to the IDL file in the following ways:

· The interface name in the ACF must be the same as the interface name in the IDL file, unless you
compile with the MIDL compiler switch /acf.

· All type names and function names in the ACF must refer to types and functions defined in the IDL
file.

· Function parameters do not need to appear in the same sequence in the ACF as in the IDL file, but
parameter names in the ACF must match names in the IDL file.

As with the IDL file, the ACF consists of a header portion and a body portion and, except in /osf mode,
can contain multiple interfaces.

See Also
/app_config, auto_handle, code, explicit_handle, IDL, implicit_handle, include, midl, nocode,
optimize, represent_as, typedef

allocate
typedef [allocate (allocate-option-list) [, type-attribute-list]] type-name;

allocate-option-list

Specifies one or more memory-allocation options. Select one of either single_node or all_nodes, or
one of either free or dont_free, or one from each group. When you specify more than one option,
separate the options with commas.

type-attribute-list

Specifies other optional ACF type attributes. When you specify more than one type attribute, separate
the options with commas.

type-name

Specifies a type defined in the IDL file.

Examples
/* ACF file */
typedef [allocate(all_nodes, dont_free)] PTYPE1;
typedef [allocate(all_nodes)] PTYPE2;
typedef [allocate(dont_free)] PTYPE3;

Remarks

The ACF type attribute allocate lets you customize memory allocation and deallocation for a type defined
in the IDL file. These are the valid options:

Option Description
all_nodes Makes one call to allocate and free memory for all

nodes.
single_node Makes many individual calls to allocate and free each

node of memory.
free Frees memory on return from the server stub.
dont_free Does not free memory on return from the server stub.

By default, the stubs may allocate storage for data referenced by a unique or full pointer by calling
midl_user_allocate and midl_user_free individually for each pointer.

You can optimize the speed of your application by specifying the option all_nodes. This option directs the
stub to compute the size of all memory referenced through the pointer of the specified type and to make a
single call to midl_user_allocate. The stub releases the memory by making one call to midl_user_free.

The dont_free option directs the MIDL compiler to generate a server stub that does not call
midl_user_free for the specified type. The dont_free option allows the pointer structures to remain
accessible to the server application after the remote procedure call has completed and returned to the
client.

Note that when applied to types used for in, out parameters, any parameter that is a pointer to a type
qualified with the all_nodes option will cause a reallocation when the data is unmarshalled. It is the
responsibility of the application to free the previously allocated memory corresponding to this parameter.
For example:

typedef struct foo
{
[string] char * PFOO;
} * PFOO
void proc1 ([in,out] PFOO * ppfoo);

The data type PFOO will be reallocated in the out direction by the stub before "unmarshalling." Therefore,
the previously allocated area must be freed by the application or a memory leak will occur.

See Also
ACF, midl_user_allocate, midl_user_free, typedef

appobject
[uuid(. . .), appobject [, coclass-attribute-list]]

coclass classname { [coclass definition]}

coclass-attribute-list

Specifies zero or more attributes that apply to the coclass statement. Allowable coclass attributes
are helpstring, helpcontext, licensed, version, control, and hidden.

classname

Specifies the name by which the component object is known in the type library.

Example
[uuid(. . .),helpstring("Hello Class"),appobject] coclass Hello
 {[default] interface IHello : IUnknown;
 interface IDispatch;
 }

Remarks

The appobject attribute identifies the coclass as an application object, which is associated with a full
EXE application, and indicates that the functions and properties of the coclass are globally available in
this type library.

Flags
TYPEFLAG_FAPPOBJECT

See Also
ODL File Syntax, ODL File Example, Generating a Type Library With MIDL, coclass, TYPEFLAGS

arrays
typedef [[type-attr-list]] type-specifier [pointer-decl] array-declarator;

typedef [[type-attr-list]] struct [tag] {
[[field-attribute-list]] type-specifier [pointer-decl] array-declarator;
...

}
typedef [[type-attr-list]] union [tag] {

[case (limited-expression [, ...])]
[[field_attribute-list]] type-specifier [pointer-decl] array-declarator;

[[default]
[[field_attribute-list]] type-specifier [pointer-decl] array-declarator;

]

[[function-attribute-list]] type-specifier [pointer-decl] function-name(
[[param-attr-list]] type-specifier [pointer-decl] array-declarator
, ...

);

type-attr-list

Specifies zero or more attributes that apply to the type. Valid type attributes include handle,
switch_type, transmit_as; the pointer attribute ref, unique, or ptr; and the usage attributes
context_handle, string, and ignore. Separate multiple attributes with commas.

type-specifier

Specifies the type identifier, base type, struct, union, or enum type. The type specification can
include an optional storage specification.

pointer-decl

Specifies zero or more pointer declarators. A pointer declarator is the same as the pointer declarator
used in C, constructed from the * designator, modifiers such as far, and the qualifier const.

array-declarator

Specifies the name of the array, followed by one of the following constructs for each dimension of the
array: "[]", "[*]", "[const1]", or "[lower...upper]" where lower and upper are constant values that
represent the lower and upper bounds. The constant lower must evaluate to zero.

tag

Specifies an optional tag for the structure or union.
field-attribute-list

Specifies zero or more field attributes that apply to the structure, union member, or function
parameter. Valid field attributes include first_is, last_is, length_is, max_is, size_is; the usage
attributes string, and ignore; the pointer attributes ref, unique, and ptr; and the union attribute
switch_type. Separate multiple field attributes with commas. Note that of the attributes listed above,
first_is, last_is, and ignore are not valid for unions.

limited-expression

Specifies a C-language expression. The MIDL compiler supports conditional expressions, logical
expressions, relational expressions, and arithmetic expressions. MIDL does not allow function
invocations in expressions and does not allow increment and decrement operators.

function-attribute-list

Specifies zero or more attributes that apply to the function. Valid function attributes are callback,
local; the pointer attribute ref, unique, or ptr; and the usage attributes string, and context_handle.

function-name

Specifies the name of the remote procedure.
param-attr-list

Specifies the directional attributes and one or more optional field attributes that apply to the array
parameter. Valid field attributes include max_is, size_is, length_is, first_is, and last_is.

Examples
/* IDL file interface body */
#define MAX_INDEX 10

typedef char ATYPE[MAX_INDEX];
typedef short BTYPE[]; // Equivalent to [*];
typedef long CTYPE[*][10]; // [][10]
typedef float DTYPE[0..10]; // Equivalent to [11]
typedef float ETYPE[0..(MAX_INDEX)];

typedef struct {
 unsigned short size;
 unsigned short length;
 [size_is(size), length_is(length)] char string[*];
} counted_string;

void MyFunction(
 [in, out] short * pSize,
 [in, out, string, size_is(*pSize)] char a[0..*]
);

Remarks

Array declarators appear in the interface body of the IDL file as part of a general declaration, as a
member of a structure or union declarator, or as a parameter to a remote procedure call.

The bounds of each dimension of the array are expressed inside a separate pair of square brackets. An
expression that evaluates to n signifies a lower bound of zero and an upper bound of n - 1. If the square
brackets are empty or contain a single asterisk (*), the lower bound is zero and the upper bound is
determined at run time.

The array can also contain two values separated by an ellipsis that represent the lower and upper bounds
of the array, as in [lower...upper]. Microsoft RPC requires a lower bound of zero. The MIDL compiler does
not recognize constructs that specify nonzero lower bounds.

Arrays can be associated with the field attributes size_is, max_is, length_is, first_is, and last_is to
specify the size of the array or the part of the array that contains valid data. These field attributes identify
the parameter, structure field, or constant that specifies the array dimension or index.

The array must be associated with the identifier specified by the field attribute in this way: When the array
is a parameter, the identifier must also be a parameter to the same function; when the array is a structure
field, the identifier must be another structure field of that same structure.

An array is called "conformant" if the upper bound of any dimension is determined at run time, and only
upper bounds can be determined at run time. To determine the upper bound, the array declaration must
include a size_is or max_is attribute.

An array is called "varying" when its bounds are determined at compile time, but the range of transmitted
elements is determined at run time. To determine the range of transmitted elements, the array declaration
must include a length_is, first_is, or last_is attribute.

A conformant varying array (also called "open") is an array whose upper bound and range of transmitted
elements are determined at run time. At most, one conformant or conformant varying array can be nested
in a C structure and must be the last element of the structure. Nonconformant varying arrays can occur
anywhere in a structure.

Multidimensional Arrays
The user can declare types that are arrays and then declare arrays of objects of such types. The
semantics of m-dimensional arrays of n-dimensional array types are the same as the semantics of m+n-
dimensional arrays.

For example, the type RECT_TYPE can be defined as a two-dimensional array and the variable rect can
be defined as an array of RECT_TYPE. This is equivalent to the three-dimensional array equivalent_rect:

typedef short int RECT_TYPE[10][20];
RECT_TYPE rect[15];
short int equivalent_rect[15][10][20]; // ~RECT_TYPE rect[15]

Microsoft RPC is C-oriented. Following C-language conventions, only the first dimension of a
multidimensional array can be determined at run time. Interoperation with DCE IDL arrays that support
other languages is limited to:

· Multidimensional arrays with constant (compile-time-determined) bounds.
· Multidimensional arrays with all constant bounds except the first dimension. The upper bound and

range of transmitted elements of the first dimension are dependent on run time.
· Any one-dimensional arrays with a lower bound of zero.

When the string attribute is used on multidimensional arrays, the attribute applies to the rightmost array.

Arrays of Pointers
Reference pointers must point to valid data. The client application must allocate all memory for an in or
in, out array of reference pointers, especially when the array is associated with in, or in, out length_is,
or last_is values. The client application must also initialize all array elements before the call. Before
returning to the client, the server application must verify that all array elements in the transmitted range
point to valid storage.

On the server side, the stub allocates storage for all array elements, regardless of the length_is or
last_is value at the time of the call. This feature can affect the performance of your application.

No restrictions are placed on arrays of unique pointers. On both the client and the server, storage is
allocated for null pointers. When pointers are non-null, data is placed in preallocated storage.

An optional pointer declarator can precede the array declarator.

When embedded reference pointers are out-only parameters, the server-manager code must assign valid
values to the array of reference pointers. For example:

typedef [ref] short * ARefPointer;

typedef ARefPointer ArrayOfRef[10];
void proc1([out] ArrayOfRef Parameter);

The generated stubs allocate the array and assign NULL values to all pointers embedded in the array.

See Also
first_is, IDL, last_is, length_is, max_is, ptr, ref, size_is, string, unique

auto_handle
[auto_handle [, interface-attribute-list]] interface interface-name

interface-attribute-list

Specifies zero or more attributes that apply to the interface as a whole, such as code or nocode.
Separate interface attributes with commas.

interface-name

Specifies the name of the interface.

Examples
[auto_handle] interface MyInterface { }
[auto_handle, code] interface MyInterface { }

Remarks

The ACF attribute auto_handle directs the stub to automatically establish the binding for a function that
does not have an explicit binding-handle parameter.

The auto_handle attribute appears in the interface header of the ACF. It also appears in the interface
header of the IDL file when you specify the MIDL compiler switch /app_config.

When the client calls a function that uses automatic binding, and no binding to a server exists, the stub
automatically establishes the binding. The binding is reused for subsequent calls to other functions in the
interface that use automatic binding. The client application program does not have to declare or perform
any processing relating to the binding handle.

When the ACF is not present or does not include the implicit_handle attribute, the MIDL compiler uses
auto_handle and issues an informational message. The MIDL compiler also uses auto_handle, if
needed, to establish the initial binding for a context_handle.

The auto_handle attribute can occur only if the implicit_handle or explicit_handle attribute does not
occur. The auto_handle attribute can occur in the ACF or IDL interface header at most once.

Note You cannot use automatic binding (either with the auto_handle attribute, or by default) if you
are processing data through pipes.

See Also
ACF, /app_config, context_handle, IDL, implicit_handle

base_types
Remarks

All data transmitted on the network during a remote procedure call must resolve to a base type or
predefined type.

MIDL supports the following base types: int, boolean, byte, char, double, float, handle_t, hyper, long,
short, small, and void *. The keywords signed and unsigned can be used to qualify integer and
character types. MIDL also provides the predefined types error_status_t and wchar_t.

Base types can appear as type specifiers in const declarations, typedef declarations, general
declarations, and as parameter type specifiers in function declarators.

The base and predefined types have the following default signs and sizes:

Base type Default sign Description
boolean unsigned 8-bit data item
byte - (not applicable) 8-bit data item
char unsigned 8-bit unsigned data item
double - 64-bit floating-point number
float - 32-bit floating-point number
handle_t - Primitive handle type
hyper signed 64-bit signed integer
int signed 32-bit signed integer
long signed 32-bit signed integer
short signed 16-bit signed integer
small signed 8-bit signed integer
void * - 32-bit context handle pointer type
wchar_t unsigned 16-bit unsigned data item

Any other types in the interface must be derived from these base or predefined types. The following
restrictions apply to data types in interfaces:

· On 16-bit platforms, the type int cannot appear in remote functions without a size qualifier such as
short, small, long or hyper.

· The type void * cannot appear in remote functions except when it is used to define a context handle.
· DCE IDL compilers do not recognize the keyword signed. Therefore, this feature is not available

when you use the MIDL compiler /osf switch.

See Also
byte, char, handle_t, long, /osf, short, small, wchar_t

bindable
[interface-attribute-list] interface | dispinterface interface-name

{
[bindable[, attribute-list]] returntype function-name(params)
}

attribute-list

Specifies zero or more attributes that apply to the function prototype for a property or a method in an
interface or dispinterface. The following attributes are accepted: helpstring, helpcontext, string,
defaultbind, displaybind, immediatebind, propget, propput, propputref, and vararg. If vararg is
specified, the last parameter must be a safe array of VARIANT type. Separate multiple attributes with
commas.

Example
[uuid(. . .)]dispinterface MyObject
{
properties:
methods:
 [id(1), propget, bindable, defaultbind, displaybind]
 long x();
 [id(1), propput, bindable, defaultbind, displaybind]
 void x(long rhs);
}

Remarks

The bindable attribute indicates that the property supports data binding. This allows the client to be
notified whenever a property has changed value. (If you want the client to be notified of impending
changes to a property, use the requestedit attribute.)

Because the bindable attribute refers to the property as a whole, it must be specified wherever the
property is defined. Therefore, you need to specify the attribute on both the property-accessing function
and the property-setting function.

Flags
FUNCFLAG_FBINDABLE, VARFLAG_FBINDABLE

See Also
defaultbind, displaybind, ODL File Syntax, ODL File Example, Generating a Type Library With MIDL,
TYPEFLAGS, dispinterface

boolean
Remarks

The keyword boolean indicates that the expression or constant expression associated with the identifier
takes the value TRUE or FALSE.

The boolean type is one of the base types of the IDL language. The boolean type can appear as a type
specifier in const declarations, typedef declarations, general declarations, and function declarators (as a
function-return-type specifier and as a parameter-type specifier). For the context in which type specifiers
appear, see IDL.

See Also
base_types, IDL

broadcast
[[[IDL-operation-attributes]]] operation-attribute , ...

IDL-operation-attributes

Specifies zero or more IDL operation attributes, such as broadcast and idempotent. Operation
attributes are enclosed in square brackets.

Remarks
The keyword broadcast specifies that remote procedure calls be sent to all servers on a local network.
Rather than being delivered to one particular server, the routine is always broadcasted to all the servers
on the network. The client receives output from the first reply to return successfully, while subsequent
replies are discarded.

The broadcast attribute specifies that the routine can be called multiple times and at the same time be
sent to multiple servers as the result of one RPC. This is different from the idempotent attribute, which
specifies that a call can be retried if it is not completed. However, an operation with the broadcast
attribute is implicitly an idempotent operation. It ensures that the data for an RPC is received and
processed zero or more times.

The broadcast attribute is supported only by connectionless protocols (datagrams). If a remote
procedure broadcasts its call to all hosts on a local network, it must use the datagram protocol sequence
ncadg_ip_udp. Note that the size of a broadcast packet is determined by the datagram service in use.

See Also
idempotent, IDL, maybe, non-idempotent

byte
Remarks

The byte keyword specifies an 8-bit data item.

A byte data item does not undergo any conversion for transmission on the network as a char type can.

The byte type is one of the base types of the interface definition language (IDL). The byte type can
appear as a type specifier in const declarations, typedef declarations, general declarations, and function
declarators (as a function-return-type specifier and as a parameter-type specifier). For the context in
which type specifiers appear, see IDL.

See Also
base_types, char

byte_count
[function-attribute-list] function-name(

[byte_count(length-variable-name)] pointer-parameter-name);
...

);

function-attribute-list

Specifies zero or more ACF function attributes.
function-name

Specifies the name of the function defined in the IDL file. The function name is required.
length-variable-name

Specifies the name of the in-only parameter that specifies the size, in bytes, of the memory area
referenced by pointer-parameter-name.

pointer-parameter-name

Specifies the name of the out-only pointer parameter defined in the IDL file.

Examples
/* IDL file */
void proc1([in] unsigned long length, [out] struct foo * pFoo);

/* ACF file */
proc1([byte_count(length)] pFoo);

Remarks

Note The ACF attribute byte_count represents a Microsoft extension to DCE IDL. Therefore, this
attribute is not available when you use the MIDL compiler switch /osf.

The byte_count attribute is a parameter attribute that associates a size, in bytes, with the memory area
indicated by the pointer.

Memory referenced by the pointer parameter is contiguous and is not allocated or freed by the client
stubs. This feature of the byte_count attribute lets you create a persistent buffer area in client memory
that can be reused during more than one call to the remote procedure.

The ability to turn off the client stub memory allocation lets you tune the application for efficiency. For
example, the byte_count attribute can be used by service-provider functions that use Microsoft RPC.
When a user application calls the service-provider API and provides a pointer to a buffer, the service
provider can pass the buffer pointer on to the remote function and reuse the buffer during multiple remote
calls without forcing the user to reallocate the memory area.

The memory area can contain complex data structures that consist of multiple pointers. Because the
memory area is contiguous, the application does not have to make many calls to individually free each
pointer and structure. The memory area can be allocated or freed with one call to the memory allocation
or free routine.

The buffer must be an out-only parameter, while the buffer length in bytes must be an in-only parameter.

Note Specify a buffer that is large enough to contain all the out parameters. Pointers are
unmarshalled on a 4-byte aligned boundary. Therefore, the alignment padding the stubs will perform
must be accounted for in the space for the buffer. In addition, packing levels used during C-language
compilation can vary. Use a byte count value that accounts for additional packing bytes added for the
packing level used during C-language compilation.

See Also
ACF, in, length_is, out, size_is

call_as
[call_as (local-proc), [, operation-attribute-list]] operation-name ;

local-proc

Specifies an operation-defined routine.
operation-attribute-list

Specifies one or more attributes that apply to the operation. Separate multiple attributes with
commas.

operation-name

Specifies the named operation presented to the application.

Remarks
The call_as attribute enables a nonremotable function to be mapped to a remote function. This is
particularly helpful in interfaces that have numerous nonremotable types as parameters. Rather than
using many represent_as and transmit_as types, you can combine all the conversions using call_as
routines. You supply the two call_as routines (client side and server side) to bind the routine between the
application calls and the remote calls. The call_as attribute can be used for object interfaces, where the
interface definition can be used for local calls as well as remote calls because it allows a nonremotable
interface to be remoted transparently. The call_as attribute cannot be used with /osf mode.

For example, assume that the routine f1 in object interface IFace requires numerous conversions
between the user calls and what is actually transmitted. The following examples describe the IDL and
ACF files for interface IFace:

In the IDL file for interface IFace:

[local] HRESULT f1 (<users parameter list>)
[call_as(f1)] long Remf1 (<remotable parameter list>);

In the ACF for interface IFace:

[call_as(f1)] Remf1();

This would cause the generated header file to define the interface using the definition of f1, yet it would
also provide stubs for Remf1:

Generated Vtable in the header file for interface IFace:

struct IFace_vtable
 {
 ..
 HRESULT (* f1) (<users parameter list>);
 ..
 };

The client-side proxy would then have a typical MIDL-generated proxy for Remf1, while the server side
stub for Remf1 would be the same as the typical MIDL-generated stub:

void IFace_Remf1_Stub (. . .)
 {
 ..

 invoke IFace_f1_Stub (<remotable parameter list>) /* instead
 of IFace_f1 */
 ..
 }

Then, the two call_as bond routines (client side and server side) must be manually coded:

HRESULT f1_Proxy (<users parameter list>)
 {
 ..
 Remf1_Proxy (<remotable parameter list>);
 ..
 }

long IFace_f1_Stub (<remotable parameter list>)
 {
 ..
 IFace_f1 (<users parameter list>);
 ..
 }

For object interfaces, these are the prototypes for the bond routines.

For client side:

<local_return_type> <interface>_<local_routine>_proxy
(<local_parameter_list>);

For server side:

<remote_return_type> <interface>_<local_routine>_stub
(<remote_parameter_list>);

For nonobject interfaces, these are the prototypes for the bond routines.

For client side:

<local_return_type> <local_routine> (<local_parameter_list>);

For server side:

<local_return_type> <interface>_v<maj>_<min>_<local_routine>
(<remote_parameter_list>);

See Also

represent_as, transmit_as

callback
[callback [, function-attr-list]] type-specifier [ptr-declarator] function-name(

[[parameter-attribute-list]] type-specifier [declarator]
, ...

);

function-attr-list

Specifies zero or more attributes that apply to the function. Valid function attributes are local; the
pointer attribute ref, unique, or ptr; and the usage attributes string, ignore, and context_handle.
Separate multiple attributes with commas.

type-specifier

Specifies a base_type, struct, union, enum type, or type identifier. An optional storage specification
can precede type-specifier.

ptr-declarator

Specifies zero or more pointer declarators. A pointer declarator is the same as the pointer declarator
used in C; it is constructed from the * designator, modifiers such as far, and the qualifier const.

function-name

Specifies the name of the remote procedure.
parameter-attribute-list

Specifies zero or more directional attributes, field attributes, usage attributes, and pointer attributes
appropriate for the specified parameter type. Separate multiple attributes with commas.

declarator

Specifies a standard C declarator such as identifiers, pointer declarators, and array declarators. For
more information, see pointers and arrays. The parameter-name identifier is optional.

Example
[callback] void DisplayString([in, string] char * p1);

Remarks

The callback attribute declares a static callback function that exists on the client side of the distributed
application. Callback functions provide a way for the server to execute code on the client.

The callback function is useful when the server must obtain information from the client. If server
applications were supported on Windows 3.x, the server could make a call to a remote procedure on the
Windows 3.x server to obtain the needed information. The callback function accomplishes the same
purpose and lets the server query the client for information in the context of the original call.

Callbacks are special cases of remote calls that execute as part of a single thread. A callback is issued in
the context of a remote call. Any remote procedure defined as part of the same interface as the static
callback function can call the callback function.

Only the connection-oriented and local protocol sequences support the callback attribute. If an RPC
interface uses a connectionless (datagram) protocol sequence, calls to procedures with the callback
attribute will fail.

Handles cannot be used as parameters in callback functions. Because callbacks always execute in the
context of a call, the binding handle used by the client to make the call to the server is also used as the

binding handle from the server to the client.

Callbacks can nest to any depth.

See Also
IDL, /osf

char
Remarks

The keyword char identifies a data item that has 8 bits. To the MIDL compiler, a char is unsigned by
default and is synonymous with unsigned char.

In this version of Microsoft RPC, the character translation tables that convert between ASCII and EBCDIC
are built into the run-time libraries and cannot be changed by the user.

The char type is one of the base types of the interface definition language (IDL). The char type can
appear as a type specifier in const declarations, typedef declarations, general declarations, and function
declarators (as a function-return-type specifier and a parameter-type specifier). For the context in which
type specifiers appear, see IDL.

DCE IDL compilers do not accept the keyword signed applied to char types. Therefore, this feature is not
available when you use the MIDL compiler /osf switch.

See Also
base_types, byte, /char, /osf, signed, string, wchar_t

coclass
[attribute-list]coclass classname {[attributes2] [interface | dispinterface] interfacename {. . . };

attribute-list

The uuid attribute is required on a coclass. This is the same uuid that is registered as a CLSID in
the system registration database. The helpstring, helpcontext, licensed, version, control, hidden,
and appobject attributes are accepted, but not required, before a coclass definition.

classname

Name by which the common object is known in the type library.
attributes2

Optional attributes for the interface or dispinterface. The source, default, and restricted attributes
are accepted on an interface or dispinterface within a coclass.

interfacename

Either an interface declared with the interface keyword, or a dispinterface declared with the
dispinterface keyword.

Examples
[uuid(. . .), version(1.0), helpstring("A class"), helpcontext(2481),
appobject] coclass myapp
{
 [source] interface IMydocfuncs : IUnknown;
 dispinterface DMydocfuncs;
};

[uuid(. . .)]
coclass foo
{
 [restricted] interface bar;
 interface baz;
}

Remarks

The coclass statement provides a listing of the supported interfaces for a component object.

The Microsoft® Component Object Model defines a class as an implementation that allows
QueryInterface between a set of interfaces.

See Also
ODL File Syntax, ODL File Example, Generating a Type Library With MIDL, TYPEFLAGS

code
[code [, ACF-interface-attributes]] interface interface-name

{
[include filename-list ;] ...
[typedef [type-attribute-list] typename;] ...

[[code [, ACF-function-attributes]] function-name (
[ACF-parameter-attributes] parameter-name ;
...
);

]
...

}

ACF-interface-attributes

Specifies a list of one or more attributes that apply to the interface as a whole. Valid attributes include
either auto_handle or implicit_handle and either code, nocode, or optimize. When two or more
interface attributes are present, they must be separated by commas.

interface-name

Specifies the name of the interface. In DCE-compatibility mode, the interface name must match the
name of the interface specified in the IDL file. When you use the MIDL compiler switch /acf, the
interface name in the ACF and the interface name in the IDL file can be different.

filename-list

Specifies a list of one or more C-header filenames, separated by commas. You must supply the full
filename, including the extension.

type-attribute-list

Specifies a list of one or more attributes, separated by commas, that apply to the specified type. Valid
type attributes include allocate and represent_as.

typename

Specifies a type defined in the IDL file. Type attributes in the ACF can only be applied to types
previously defined in the IDL file.

ACF-function-attributes

Specifies zero or more attributes that apply to the function as a whole, such as comm_status.
Function attributes are enclosed in square brackets. Separate multiple function attributes with
commas.

function-name

Specifies the name of the function as defined in the IDL file.
ACF-parameter-attributes

Specifies ACF attributes that apply to a parameter. Note that zero, one, or more attributes can be
applied to the parameter. Separate multiple parameter attributes with commas. ACF parameter
attributes are enclosed in square brackets.

parameter-name

Specifies a parameter of the function as defined in the IDL file. Each parameter for the function must
be specified in the same sequence and using the same name as defined in the IDL file.

Remarks
The code attribute can appear in the ACF header or be applied to an individual function.

When the code attribute appears in the ACF header, client stub code is generated for all remote functions
that do not have the nocode function attribute. You can override the code attribute in the header for an
individual function by specifying the nocode attribute as a function attribute.

When the code attribute appears in the remote function's attribute list, client stub code is generated for
the function. Client stub code is not generated when:

· The ACF header includes the nocode attribute.
· The nocode attribute is applied to the function.
· The local attribute applies to the function in the interface file.

Either code or nocode can appear in the interface or function attribute list, but the one you choose can
appear only once in the list.

See Also
ACF, nocode

comm_status
[comm_status [, ACF-function-attributes]] function-name(

[[ACF-parameter-attributes]] parameter-name
, ...

);

[[ACF-function-attributes]] function-name(
[comm_status [, ACF-parameter-attributes]] parameter-name
...);

ACF-function-attributes

Specifies zero or more ACF function attributes, such as comm_status and nocode. Function
attributes are enclosed in square brackets. Note that zero, one, or more attributes can be applied to a
function. Separate multiple function attributes with commas. Note that if comm_status appears as a
function attribute, it cannot also appear as a parameter attribute.

function-name

Specifies the name of the function as defined in the IDL file.
ACF-parameter-attributes

Specifies attributes that apply to a parameter. Note that zero, one, or more attributes can be applied
to the parameter. Separate multiple parameter attributes with commas. Parameter attributes are
enclosed in square brackets. IDL parameter attributes, such as directional attributes, are not allowed
in the ACF. Note that if comm_status appears as a parameter attribute, it cannot also appear as a
function attribute.

parameter-name

Specifies the parameter for the function as defined in the IDL file. Each parameter for the function
must be specified in the same sequence, using the same name as defined in the IDL file.

Remarks
The comm_status attribute can be used as either a function attribute or as a parameter attribute, but it
can appear only once per function. It can be applied either to the function or to one parameter in each
function.

The comm_status attribute can only be applied to functions that return the type error_status_t. When a
communication error occurs during the execution of the function, an error code is returned.

When comm_status is used as a parameter attribute, the parameter must be defined in the IDL file and
must be an out parameter of type error_status_t. When a communication error occurs during the
execution of the function, the parameter is set to the error code. When the remote call is completed
successfully, the procedure sets the value.

It is possible for both the comm_status and fault_status attributes to appear in a single function, either
as function attributes or parameter attributes. If both attributes are function attributes or if they apply to the
same parameter and no error occurs, the function or parameter has the value error_status_ok.
Otherwise, it contains the appropriate comm_status or fault_status value. Because values returned for
comm_status are different from the values returned for fault_status, the returned values are readily
interpreted.

See Also
ACF, error_status_t, fault_status

const
const const-type identifier = const-expression ;

/* IDL file typedef syntax */
[typedef [, type-attribute-list]] const const-type declarator-list;
[typedef [, type-attribute-list]] pointer-type const declarator-list;

[[function-attr-list]] type-specifier [ptr-decl] function-name(
[[parameter-attribute-list]] const const-type [declarator],
[[parameter-attribute-list]] pointer-type const [declarator]
, ...

);

const-type

Specifies a valid MIDL integer, character, string, or boolean type. Valid MIDL types include small,
short, long, char, char *, wchar_t, wchar_t *, byte, byte *, and void *. The integer and character
types can be signed or unsigned.

identifier

Specifies a valid MIDL identifier. Valid MIDL identifiers consist of up to 31 alphanumeric and/or
underscore characters and must start with an alphabetic or underscore character.

const-expression

Specifies an expression, identifier, or numeric or character constant appropriate for the specified type:
constant integer literals or constant integer expressions for integer constants; boolean expressions
that can be computed at compilation for boolean types; single-character constants for character
types; and string constants for string types. The void * type can be initialized only to NULL.

type-attribute-list

Specifies one or more attributes that apply to the type.
pointer-type

Specifies a valid MIDL pointer type.
declarator and declarator-list

Specifies standard C declarators, such as identifiers, pointer declarators, and array declarators. For
more information, see pointers and arrays. The declarator-list consists of one or more declarators,
separated by commas. The parameter-name identifier in the function declarator is optional.

function-attr-list

Specifies zero or more attributes that apply to the function. Valid function attributes are callback,
local; the pointer attribute ref, unique, or ptr; and the usage attributes string, ignore, and
context_handle.

type-specifier

Specifies a base_type, struct, union, enum type, or type identifier. An optional storage specification
can precede type-specifier.

ptr-decl

Specifies zero or more pointer declarators. A pointer declarator is the same as the pointer declarator
used in C. It is constructed from the * designator, modifiers such as far, and the qualifier const.

function-name

Specifies the name of the remote procedure.
parameter-attribute-list

Specifies zero or more directional attributes, field attributes, usage attributes, and pointer attributes
appropriate for the specified parameter type. Separate multiple attributes with commas.

Examples
const void * p1 = NULL;
const char my_char1 = 'a';
const char my_char2 = my_char1;
const wchar_t my_wchar3 = L'a';
const wchar_t * pszNote = L"Note";
const unsigned short int x = 123;

typedef [string] const char *LPCSTR;

HRESULT GetName([out] wchar_t * const pszName);

Remarks

MIDL allows you to declare constant integer, character, string, and boolean types in the interface body of
the IDL file. You can use the const keyword to modify the type of a type declaration or the type of a
function parameter. Const type declarations are reproduced in the generated header file as #define
directives.

DCE IDL compilers do not support constant expressions. Therefore this feature is not available when you
use the MIDL compiler /osf switch.

A previously defined constant can be used as the assigned value of a subsequent constant. The value of
a constant integral expression is automatically converted to the respective integer type in accordance with
C conversion rules.

The value of a character constant must be a single-quoted ASCII character. When the character constant
is the single-quote character itself ('), the backslash character (\) must precede the single-quote character,
as in \'.

The value of a character-string constant (char *) must be a double-quoted string. Within a string, the
backslash (\) character must precede a literal double-quote character ("), as in \". Within a string, the
backslash character (\) represents an escape character. String constants can consist of up to 255
characters.

The value NULL is the only valid value for constants of type void *. Any attributes associated with the
const declaration are ignored.

The MIDL compiler does not check for range errors in const initialization. For example, when you specify
"const short x = 0xFFFFFFFF;" the MIDL compiler does not report an error and the initializer is
reproduced in the generated header file.

See Also
base_types, IDL, /osf

context_handle
typedef [context_handle [, type-attribute-list]] type-specifier declarator-list;

[context_handle [, function-attr-list]] type-specifier [ptr-decl] function-name(
[[parameter-attribute-list]] type-specifier [declarator]
, ...

);

[[function-attr-list]] type-specifier [ptr-decl] function-name(
[context_handle [, parameter-attribute-list]] type-specifier [declarator]
, ...

);

[void __RPC_USER context-handle-type_rundown (context-handle-type);]

type-attribute-list

Specifies one or more attributes that apply to the type.
type-specifier

Specifies a pointer type or a type identifier. An optional storage specification can precede type-
specifier.

declarator and declarator-list

Specifies standard C declarators, such as identifiers, pointer declarators, and array declarators. The
declarator for a context handle must include at least one pointer declarator. For more information, see
pointers and arrays. The declarator-list consists of one or more declarators, separated by commas.
The parameter-name identifier in the function declarator is optional.

function-attr-list

Specifies zero or more attributes that apply to the function. Valid function attributes are callback,
local; the pointer attribute ref, unique, or ptr; and the usage attributes string, ignore, and
context_handle.

ptr-decl

Specifies zero or more pointer declarators. A pointer declarator is the same as the pointer declarator
used in C; it is constructed from the * designator, modifiers such as far, and the qualifier const.

function-name

Specifies the name of the remote procedure.
parameter-attribute-list

Specifies zero or more directional attributes, field attributes, usage attributes, and pointer attributes
appropriate for the specified parameter type. Separate multiple attributes with commas.

context-handle-type

Specifies the identifier that specifies the context handle type as defined in a typedef declaration that
takes the context_handle attribute. The rundown routine is optional.

Example

typedef [context_handle] void * PCONTEXT_HANDLE_TYPE;
short RemoteFunc1([out] PCONTEXT_HANDLE_TYPE * pCxHandle);
short RemoteFunc2([in, out] PCONTEXT_HANDLE_TYPE * pCxHandle);
void __RPC_USER PCONTEXT_HANDLE_TYPE_rundown (PCONTEXT_HANDLE_TYPE);

Remarks

The context_handle attribute identifies a binding handle that maintains context, or state information, on
the server between remote procedure calls. The attribute can appear as an IDL typedef type attribute, as
a function return type attribute, or as a parameter attribute.

When you use the MIDL 3.0 compiler in default mode, a context handle can be any pointer type selected
by the user, as long as it complies with the requirements for context handles described following. The
data associated with such a context handle type is not transmitted on the network and should only be
manipulated by the server application. DCE IDL compilers restrict context handles to pointers of type void
*. Therefore this feature is not available when you use the MIDL compiler /osf switch.

As with other handle types, the context handle is opaque to the client application and any data associated
with it is not transmitted. On the server, the context handle serves as a handle on active context and all
data associated with the context handle type is accessible.

To create a context handle, the client passes to the server an out, ref pointer to a context handle. (The
context handle itself can have a null or non-null value, as long as its value is consistent with its pointer
attributes. For example, when the context handle type has the ref attribute applied to it, it cannot have a
null value.) Another binding handle must be supplied to accomplish the binding until the context handle is
created. When no explicit handle is specified, implicit binding is used. When no implicit_handle attribute
is present, an auto handle is used.

The remote procedure on the server creates an active context handle. The client must use that context
handle as an in or in, out parameter in subsequent calls. An in-only context handle can be used as a
binding handle, so it must have a non-null value. An in-only context handle does not reflect state changes
on the server.

On the server, the called procedure can interpret the context handle as needed. For example, the called
procedure can allocate heap storage and use the context handle as a pointer to this storage.

To close a context handle, the client passes the context handle as an in, out argument. The server must
return a null context handle when it is no longer maintaining context on behalf of the caller. For example, if
the context handle represents an open file and the call closes the file, the server must set the context
handle to NULL and return it to the client. A null value is invalid as a binding handle on subsequent calls.

A context handle is only valid for one server. When a function has two handle parameters and the context
handle is not null, the binding handles must refer to the same address space.

When a function has an in or an in, out context handle, its context handle can be used as the binding
handle. In this case, implicit binding is not used and the implicit_handle or auto_handle attribute is
ignored.

The following restrictions apply to context handles:

· Context handles cannot be array elements, structure members, or union members. They can only be
parameters.

· Context handles cannot have the transmit_as or represent_as attribute.
· Parameters that are pointers to out context handles must be ref pointers.
· An in context handle can be used as the binding handle and cannot be null.
· An in, out context handle can be null on input, but only if the procedure has another explicit handle

parameter.

· A context handle cannot be used with callbacks.

See Also
auto_handle, handle, handles, Context Handles, Server Context Rundown Routine, Client Context
Reset

control
[uuid, control [, attribute-list]] library | coclass lib-or-coclassname

{ definitions }

attribute-list

Specifies zero or more attributes that apply to the library or coclass statement. Separate multiple
attributes with commas.

Example
[uuid(. . .),helpstring("Hello 2.1 OLE Control Library"),
 control,version(2.1)]
library Hello
{ /* library definitions */}

Remarks

The control attribute identifies a coclass or library as an OLE control, from which a container site will
derive additional type libraries or component object classes. This attribute allows you to mark type
libraries that describe controls so they will not be displayed in type browsers intended for nonvisual
objects.

Flags
TYPEFLAG_FCONTROL, LIBFLAG_FCONTROL

See Also
ODL File Syntax, ODL File Example, Generating a Type Library With MIDL, TYPEFLAGS, coclass,
library

cpp_quote
cpp_quote("string")

string

Specifies a quoted string that is emitted in the generated header file. The string must be quoted to
prevent expansion by the C preprocessor.

Examples
cpp_quote("#include \"foo.h\" ")
cpp_quote("#define UNICODE")

Remarks

The cpp_quote keyword instructs MIDL to emit the specified string, without the quote characters, into the
generated header file.

C-language preprocessing directives that appear in the IDL file are processed by the C compiler's
preprocessor. The #define directives in the IDL file are available during MIDL compilation but are not
available to the C compiler.

For example, when the preprocessor encounters the directive "#define WINDOWS 4", the preprocessor
replaces all occurrences of "WINDOWS" in the IDL file with "4". The symbol "WINDOWS" is not available
during C-language compilation.

To allow the C-preprocessor macro definitions to pass through the MIDL compiler to the C compiler, use
the #pragma midl_echo or cpp_quote directive. These directives instruct the MIDL compiler to generate
a header file that contains the parameter string with the quotation marks removed. The #pragma
midl_echo and cpp_quote directives are equivalent.

The MIDL compiler places the strings specified in the cpp_quote and pragma directives into the header
file in the sequence in which they are specified in the IDL file, and relative to other interface components
in the IDL file. The strings should usually appear in the IDL file interface body section after all import
operations.

See Also
IDL, pragma

decode
[decode [, interface-attribute-list]] interface interface-name

[decode [, op-attribute-list]] proc-name
typedef [decode [, type-attribute-list]] type-name

interface-attribute-list

Specifies other attributes that apply to the interface as a whole.
interface-name

Specifies the name of the interface.
op-attribute-list

Specifies other operational attributes that apply to the procedure such as encode.
proc-name

Specifies the name of the procedure.
type-attribute-list

Specifies other attributes such as encode and allocate.
typename

Specifies a type defined in the IDL file.

Remarks
The decode attribute specifies that a procedure or a type needs de-serialization support. This attribute
causes the MIDL compiler to generate code that an application can use to retrieve serialized data from a
buffer. The encode attribute provides serialization support, generating the code to serialize data into a
buffer.

Use the encode and decode attributes in an ACF to generate serialization code for procedures or types
defined in the IDL file of an interface. When used as an interface attribute, decode applies to all types
and procedures defined in the IDL file. When used as a type attribute, decode applies only to the
specified type. When used as an operational attribute, decode applies only to that procedure.

For more information about using this serialization support, see Encoding Services and encode.

See Also
encode

default
[uuid, attribute-list] coclass coclass-name

{
[default [, optional-interface-attribute]] interface | dispinterface interface-name
}

attribute-list

Specifies additional coclass attributes. Separate multiple attributes with commas.
optional-interface-attribute

The source attribute, which specifies that an interface or dispinterface is outgoing, is the only other
attribute that can be used here.

Example
 [uuid(. . .), helpstring("Hello Class"),appobject] coclass Hello
 {[default] interface IHello;
 interface IDispatch;
 };

Remarks

The default attribute Indicates that the interface or dispinterface, defined within a coclass, represents the
default programmability interface. This attribute is intended for use by macro languages.

A coclass may have at most two default members. One represents the outgoing (source) interface or
dispinterface, and the other represents the incoming (sink) interface or dispinterface. If the default
attribute is not specified for any member of the coclass or cotype, the first outgoing and incoming
members that do not have the restricted attribute are treated as the defaults.

Flags
IMPLTYPEFLAG_FDEFAULT

See Also
TYPEFLAGS, ODL File Syntax, ODL File Example, Generating a Type Library With MIDL

defaultbind
[interface-attribute-list] interface | dispinterface interface-name

{
[bindable, defaultbind[, attribute-list]] returntype function-name(params)
}

Example
[uuid(. . .)] interface MyObject : IUnknown
{
 properties:
 methods:
 [id(1), propget, bindable, defaultbind, displaybind]
 long Size(void);

 [id(1), propput, bindable, defaultbind, displaybind]
 void Size([in]long lSize);
}

Remarks

The defaultbind attribute indicates the single, bindable property that best represents the object.
Properties that have the defaultbind attribute must also have the bindable attribute. Only one property in
an interface or dispinterface can have the defaultbind attribute.

This attribute is used by containers that have a user model involving binding to an object rather than
binding to a property of an object. An object can support data binding but not have this attribute.

Flags
FUNCFLAG_FDEFAULTBIND, VARFLAG_FDEFAULTBIND

See Also
TYPEFLAGS, ODL File Syntax, ODL File Example, Generating a Type Library With MIDL

defaultvalue
interface interface-name

{

 return-type func-name(mandatory-param-list,
[[attribute-list,] defaultvalue(value)] param-type param-name[, optional-param-list]);

 }

Examples
interface IFoo : IUnknown
{
 HRESULT Ex1([defaultvalue(44)] LONG i);
 HRESULT Ex2([defaultvalue(44)] SHORT i);
 HRESULT Ex3([defaultvalue("Hello")] BSTR i);
...
}
interface QueryDef : IUnknown
{
 HRESULT OpenRecordset([in, defaultvalue(DBOPENTABLE)]
 LONG Type,
 [out,retval] Recordset **pprst);
}
 // Type is now known to be a LONG type (good for browser in VBA and
// good for a C/C++ programmer) and has a default value of
// DBOPENTABLE

Remarks

The defaultvalue attribute allows specification of a default value for a typed optional parameter. The
value can be any constant, or an expression that resolves to a constant, that can be represented by a
VARIANT. Specifically, you cannot apply the defaultvalue attribute to a parameter that is a structure, an
array, or a SAFEARRAY.type.

The MIDL compiler accepts the following parameter ordering (from left-to-right):

1. Required parameters (parameters that do not have the defaultvalue or optional attributes),
2. optional parameters with or without the defaultvalue attribute,
3. parameters with the optional attribute and without the defaultvalue attribute,
4. lcid parameter, if any,
5. retval parameter

See Also
interface, dispinterface, TYPEFLAGS, ODL File Syntax, ODL File Example, Generating a Type Library
With MIDL

dispinterface
[attributes]dispinterface intfname { properties:proplist methods: methlist};

[attributes]dispinterface intfname { interface interfacename};

attributes

Specifies attributes that apply to the entire dispinterface. The following attributes are accepted:
helpstring, helpcontext, helpfile, hidden, nonextensible, oleautomation, restricted, uuid,
version.

intfname

The name by which the dispinterface is known in the type library. This name must be unique within
the type library.

interfacename

(Syntax 2) The name of the interface to declare as an IDispatch interface.
proplist

(Syntax 1) An optional list of properties supported by the object, declared in the form of variables. This
is the short form for declaring the property functions in the methods list. See the comments section for
details.

methlist

(Syntax 1) A list comprising a function prototype for each method and property in the dispinterface.
Any number of function definitions can appear in methlist. A function in methlist has the following
form:
[attributes] returntype methname(params);
The following attributes are accepted on a method in a dispinterface: helpstring, helpcontext,
string, bindable, defaultbind, displaybind, propget, propput, propputref, and vararg. If vararg is
specified, the last parameter must be a safe array of VARIANT type.
The parameter list is a comma-delimited list, each element of which has the following form:
[attributes] type paramname
The type can be any declared or built-in type, or a pointer to any type. Attributes on parameters are:
in, out, optional, string

The MIDL compiler accepts the following parameter ordering (from left-to-right):

1. Required parameters (parameters that do not have the defaultvalue or optional attributes),
2. optional parameters with or without the defaultvalue attribute,
3. parameters with the optional attribute and without the defaultvalue attribute,
4. lcid parameter, if any,
5. retval parameter

Examples
[uuid(. . .), version(1.0), helpstring("Useful help string."),
helpcontext(2480)]
dispinterface MyDispatchObject {
 properties:
 [id(1)] int x; //An integer property named x

 [id(2)] BSTR y; //A string property named y
 methods:
 [id(3)] void show(); //No arguments, no result
 [id(11)] int computeit(int inarg, double *outarg);
};

[uuid(. . .)]
dispinterface MyObject
{
 properties:
 methods:
 [id(1), propget, bindable, defaultbind, displaybind]
 long x();

 [id(1), propput, bindable, defaultbind, displaybind]
 void x(long rhs);
}

Remarks

The dispinterface statement defines a set of properties and methods on which you can call
IDispatch::Invoke. A dispinterface may be defined by explicitly listing the set of supported methods and
properties (Syntax 1), or by listing a single interface (Syntax 2).

Method functions are specified exactly as described in the reference page for module except that the
entry attribute is not allowed. Note that STDOLE32.TLB (STDOLE.TLB on 16-bit systems) must be
imported, because a dispinterface inherits from IDispatch.

You can declare properties in either the properties or methods lists. Declaring properties in the properties
list does not indicate the type of access the property supports (that is, get, put, or putref). Specify the
readonly attribute for properties that don't support put or putref. If you declare the property functions in
the methods list, functions for one property all have the same ID.

Using the first syntax, the properties: and methods: tags are required. The id attribute is also required
on each member. For example:

properties:
 [id(0)] int Value; // Default property.
methods:
 [id(1)] void Show();

Unlike interface members, dispinterface members cannot use the retval attribute to return a value in
addition to an HRESULT error code. The lcid attribute is likewise invalid for dispinterfaces, because
IDispatch::Invoke passes an LCID. However, it is possible to redeclare an interface that uses these
attributes.

Using the second syntax, interfaces that support IDispatch and are declared earlier in an ODL script can
be redeclared as IDispatch interfaces as follows:

dispinterface helloPro {
 interface hello;
};

The preceding example declares all the members of hello and all the members that hello inherits as
supporting IDispatch. In this case, if hello were declared earlier with lcid and retval members that
returned HRESULTs, MkTypLib would remove each lcid parameter and HRESULT return type, and
instead mark the return type as that of the retval parameter.

The properties and methods of a dispinterface are not part of the VTBL of the dispinterface.
Consequently, CreateStdDispatch and DispInvoke cannot be used to implement IDispatch::Invoke.
The dispinterface is used when an application needs to expose existing non-VTBL functions through OLE
Automation. These applications can implement IDispatch::Invoke by examining the dispidMember
parameter and directly calling the corresponding function.

See Also
interface, TYPEFLAGS, ODL File Syntax, ODL File Example, Generating a Type Library With MIDL

displaybind
[interface-attribute-list] interface | dispinterface interface-name

{
[bindable, displaybind[, attribute-list]] returntype function-name(params)
}

Example
[uuid(. . .)] interface MyObject : IUnknown
{
 properties:
 methods:
 [id(1), propget, bindable, defaultbind, displaybind]
 long Size(void);

 [id(1), propput, bindable, defaultbind, displaybind]
 void Size([in]long lSize);
}

Remarks

The displaybind attribute indicates a property that should be displayed to the user as bindable.
Properties that have the displaybind attribute must also have the bindable attribute. An object can
support data binding but not have this attribute.

Flags
FUNCFLAG_FDISPLAYBIND, VARFLAG_FDISPLAYBIND

See Also
TYPEFLAGS, ODL File Syntax, ODL File Example, Generating a Type Library With MIDL

dllname(str)
[uuid, dllname("filename")[, optional-attribute-list]]

module modulename {
elementlist

};

Example
[uuid(. . .),helpstring("A meaningful comment"), dllname("HANDY.DLL")]
module HandyStuff{
 . . .
};

Remarks

The dllname attribute defines the name of the DLL that contains the entry points for a module. This
attribute is required on a module.

See Also
module,entry, ODL File Syntax, ODL File Example, Generating a Type Library With MIDL

double
Remarks

The double keyword designates a 64-bit floating-point number.

The double type is one of the base types of the interface definition language (IDL). This type can appear
as a type specifier in typedef declarations, general declarations, and function declarators (as a function-
return-type specifier and a parameter-type specifier). For the context in which type specifiers appear, see
IDL.

The double type cannot appear in const declarations.

See Also
base_types, float

dual
[uuid, oleautomation, dual [, optional-attribute-list]]

interface interfacename
{. . .};

Example
[uuid(. . .), oleautomation, dual]
 interface IHello : Idispatch
 {
 //diverse and sundry properties and methods defined here
 };

Remarks

The dual attribute identifies an interface that exposes properties and methods through IDispatch and
directly through the VTBL. The interface must be compatible with OLE Automation and be derived from
IDispatch. The attribute is not allowed on dispinterfaces.

The dual attribute creates an interface that is both a Dispatch interface and a Component Object Model
(COM) interface. The first seven entries of the VTBL for a dual interface are the seven members of
IDispatch, and the remaining entries are OLE COM entries for direct access to members of the dual
interface. All the parameters and return types specified for members of a dual interface must be OLE
Automation-compatible types.

All members of a dual interface must pass an HRESULT as the function return value. Members, such as
property accessor functions, that need to return other values, such as should specify the last parameter
as [out, retval], indicating an output parameter that returns the value of the function. In addition,
members that need to support multiple locales should pass an lcid parameter.

A dual interface provides for both the speed of direct VTBL binding and the flexibility of IDispatch binding.
For this reason, dual interfaces are recommended whenever possible.

Note If your application accesses object data by casting the this pointer within the interface call,
you should check the VTBL pointers in the object against your own VTBL pointers to ensure that you
are connected to the appropriate proxy.

Specifying dual on an interface implies that the interface is compatible with OLE Automation, and
therefore causes both the TYPEFLAG_FDUAL and TYPEFLAG_FOLEAUTOMATION flags to be set.

Flags
TYPEFLAG_FDUAL, TYPEFLAG_FOLEAUTOMATION

See Also
interface, oleautomation, ODL File Syntax, ODL File Example, Generating a Type Library With MIDL

enable_allocate
Remarks

The keyword enable_allocate specifies that the server stub code should enable the stub memory
management environment. In default mode, the server stub enables the memory environment only when
the enable_allocate attribute is used. The memory management environment must be enabled before
memory can be allocated using RpcSmAllocate. In osf mode (when you compile using the /osf switch),
the stub enables this environment automatically when the remote operation includes full pointers or
pointers that provide for the stub or the user to allocate memory, or on request when the enable_allocate
attribute is used.

The client side stub may be sensitive to the Rpcss memory management environment. If a sensitive
client stub is executed when the Rpcss package is disabled, the default user allocator/deallocators are
called (for example, midl_user_allocate/midl_user_free). When enabled, the Rpcss package uses the
allocator/deallocator pair from the package. In the default mode, the client is sensitive only when the
enable_allocate attribute is used. Typically, the client side stub operates in the disabled environment. In
osf mode (when you compile using the /osf switch), the client is always sensitive to the Rpcss memory
management environment and, therefore, the enable_allocate attribute will not affect the client stubs.

See Also
ACF, RpcSmDisableAllocate, RpcSmEnableAllocate, RpcSmFree

encapsulated_union
typedef [[type-attribute-list]]

union [struct-name] switch (switch-type switch-name) [union-name] {
[case (limited-expression-list)]

[[field-attribute-list]] type-specifier declarator-list ;
...

}

type-attribute-list

Specifies zero or more attributes that apply to the union type. Valid type attributes include handle,
transmit_as; the pointer attribute ref, unique, or ptr; and the usage attributes context_handle and
ignore. Separate multiple attributes with commas.

struct-name

Specifies an optional tag that names the structure generated by the MIDL compiler.
switch-type

Specifies an int, char, enum type, or an identifier that resolves to one of these types.
switch-name

Specifies the name of the variable of type switch-type that acts as the union discriminant.
union-name

Specifies an optional identifier that names the union in the structure, generated by the MIDL compiler,
that contains the union and the discriminant.

limited-expression-list

Specifies one or more C-language expressions. The MIDL compiler supports conditional expressions,
logical expressions, relational expressions, and arithmetic expressions. MIDL does not allow function
invocations in expressions and does not allow increment and decrement operators.

field-attribute-list

Specifies zero or more field attributes that apply to the union member. Valid field attributes include
first_is, last_is, length_is, max_is, size_is; the usage attributes string, ignore, and
context_handle; the pointer attribute unique or ptr; and, for members that are tnonencapsulated
unions, the union attribute switch_type. Separate multiple field attributes with commas.

type-specifier

Specifies a base_type, struct, union, enum type, or type identifier. An optional storage specification
can precede type-specifier.

declarator-list

One or more standard C declarators, such as identifiers, pointer declarators, and array declarators.
(Function declarators and bit-field declarations are not allowed in unions that are transmitted in
remote procedure calls. Except when you use the MIDL compiler switch /osf, these declarators are
allowed in unions that are not transmitted.) Separate multiple declarators with commas.

Examples
typedef union _S1_TYPE switch (long l1) U1_TYPE {
 case 1024:
 float f1;

 case 2048:
 double d2;
} S1_TYPE;

/* in generated header file */
typedef struct _S1_TYPE {
 long l1;
 union {
 float f1;
 double d2;
 } U1_TYPE;
} S1_TYPE;

Remarks

The encapsulated union is indicated by the presence of the switch keyword. This type of union is so
named because the MIDL compiler automatically encapsulates the union and its discriminant in a
structure for transmission during a remote procedure call.

If the union tag is missing (U1_TYPE in the example above), the compiler will generate the structure with
the union field named tagged_union.

The shape of unions must be the same across platforms to ensure interconnectivity.

See Also
IDL, ms_union, non-encapsulated_union, switch_is, switch_type, union

encode
[encode [, interface-attribute-list]] interface interface-name

[encode [, op-attribute-list]] proc-name
typedef [encode [, type-attribute-list]] type-name

interface-attribute-list

Specifies other attributes that apply to the interface as a whole.
interface-name

Specifies the name of the interface.
op-attribute-list

Specifies other operational attributes that apply to the procedure such as decode.
proc-name

Specifies the name of the procedure.
type-attribute-list

Specifies other attributes that apply to the type such as decode and allocate.
typename

Specifies a type defined in the IDL file.

Examples
/*
 ACF file example;
 Assumes MyType1, MyType2, MyType3, MyProc1, MyProc2, MyProc3 defined
 in IDL file
 MyType1, MyType2, MyProc1, MyProc2 have encode and decode
 serialization support
 MyType3 and MyProc3 have encode serialization support only
*/
[encode, implicit_handle(handle_t bh)] interface regress
{
 typedef [decode] MyType1;
 typedef [encode, decode] MyType2;
 [decode] MyProcc1();
 [encode] MyProc2();
}

Remarks

The encode attribute specifies that a procedure or a data type needs serialization support. This attribute
causes the MIDL compiler to generate code that an application can use to serialize data into a buffer. The
decode attribute provides deserialization support, generating the code for retrieving data from a buffer.

Use the encode and decode attributes in an ACF to generate serialization code for procedures or types
defined in the IDL file of an interface. When used as an interface attribute, encode applies to all the types
and procedures defined in the IDL file. When used as an operational attribute, encode applies only to the
specified procedure. When used as a type attribute, encode applies only to the specified type.

When the encode or decode attribute is applied to a procedure, the MIDL compiler generates a

serialization stub in a similar fashion as remote stubs are generated for remote routines. A procedure can
be either a remotable or a serializing procedure, but it cannot be both. The prototype of the generated
routine is sent to the STUB.H file while the stub itself goes into the STUB_C.C file.

The MIDL compiler generates two functions for each type the encode attribute applies to, and one
additional function for each type the decode attribute applies to. For example, for a user-defined type
named MyType, the compiler generates code for the MyType_Encode, MyType_Decode, and
MyType_AlignSize functions. For these functions, the compiler writes prototypes to STUB.H and source
code to STUB_C.C.

For additional information about serialization handles and encoding or decoding data, see Using
Encoding Services.

See Also
decode

endpoint
endpoint("protocol-sequence:[endpoint-port]" [, ...])

protocol-sequence

Specifies a character string that represents a valid combination of an RPC protocol (such as "ncacn"),
a transport protocol (such as "tcp"), and a network protocol (such as "ip"). Microsoft RPC supports the
following protocol sequences:

Protocol
sequence

Description Supporting Platforms

ncacn_nb_tcp Connection-oriented
NetBIOS over TCP

Client and server: Windows NT
Client only: MS-DOS, Windows
3.x™

ncacn_nb_ipx Connection-oriented
NetBIOS over IPX

Client and server: Windows NT
Client : MS-DOS, Windows 3.x

ncacn_nb_nb Connection-oriented
NetBEUI

Client and server: Windows NT,
Windows® 95
Client : MS-DOS, Windows 3.x

ncacn_ip_tcp Connection-oriented
TCP/IP

Client and server: Windows 95
and Windows NT
Client: MS-DOS,Windows 3.x,
and Apple® Macintosh®

ncacn_np Connection-oriented
named pipes

Client and server: Windows NT
Client: MS-DOS, Windows 3.x,
Windows 95

ncacn_spx Connection-oriented
SPX

Client and server: Windows NT,
Windows 95
Client: MS-DOS, Windows 3.x

ncacn_dnet_nsp Connection-oriented
DECnet

Client only: MS-DOS, Windows
3.x

ncacn_at_dsp Connection-oriented
AppleTalk DSP

Server: Windows NT
Client: Apple Macintosh

ncacn_vns_spp Connection-oriented
Vines SPP

Client and server: Windows NT
Client: MS-DOS, Windows 3.x

ncadg_ip_udp Datagram
(connectionless)
UDP/IP

Client and server: Windows NT
Client: MS-DOS, Windows 3.x

ncadg_ipx Datagram
(connectionless) IPX

Client and server: Windows NT
Client: MS-DOS, Windows 3.x

ncalrpc Local procedure call Client and server: Windows NT
and Windows 95

endpoint-port

Specifies a string that represents the endpoint designation for the specified protocol family. The
syntax of the port string is specific to each protocol sequence.

Examples
endpoint("ncacn_np:[\\pipe\\rainier]")

endpoint("ncacn_ip_tcp:[1044]", "ncacn_np:[\\pipe\\shasta]")

Remarks

The endpoint attribute specifies a well-known port or ports (communication endpoints) on which servers
of the interface listen for calls.

The endpoint specifies a transport family such as the TCP/IP connection-oriented protocol, a NetBIOS
connection-oriented protocol, or the named-pipe connection-oriented protocol.

The protocol-sequence value determines the valid values for the endpoint-port. The MIDL compiler
checks only general syntax for the endpoint-port entry. Port specification errors are reported by the run-
time libraries. For information about the allowed values for each protocol sequence, see the topic for that
protocol sequence.

The following protocol sequences specified by DCE are not supported by the MIDL compiler provided with
Microsoft RPC: ncacn_osi_dna and ncadg_dds.

Make sure that you correctly quote backslash characters in endpoints. This error commonly occurs when
the endpoint is a named pipe. Endpoint information specified in the IDL file is used by the RPC run-time
functions RpcServerUseProtseqIf and RpcServerUseAllProtseqsIf.

See Also
IDL

entry
 [uuid, entry(entry-id)[, optional-attribute-list]]

module modulename {
elementlist

};

Example
[dllname("MyAppsFirst.dll")] module MyModule
 {
 [entry(20), bindable, requestedit, propputref, defaultbind]
 void Func1([in]IUnknown * Param1, [out] MyType * Param2);
 [entry("TwentyOne"), hidden, vararg]
 SAFEARRAY (int) Func2 ([in, out] SAFEARRAY (variant) *varP) ;
 [entry(22)] Float Func3 ([in] lpstr pName, [in] double dLevel,
 [out] short * sByte) ;
 } ;

Remarks

The entry attribute specifies an exported function or constant in a module by identifying the entry point in
the DLL. If entryid is a string, this is a named entry point. If entryid is a number, the entry point is defined
by an ordinal. This attribute provides a way to obtain the address of a function in a module.

See Also
dllname, module, ODL File Syntax, ODL File Example, Generating a Type Library With MIDL

enum
enum [tag] { identifier [=integer-value] [, ...] }

tag

Specifies an optional tag for the enumerated type.
identifier

Specifies the particular enumeration.
integer-value

Specifies a constant integer value.

Examples
typedef enum {Monday=2, Tuesday, Wednesday, Thursday, Friday} workdays;

typedef enum {Clemens=21, Palmer=22, Ryan=34} pitchers;

Remarks

The keyword enum is used to identify an enumerated type. Enum types can appear as type specifiers in
typedef declarations, general declarations, and function declarators (either as the function-return-type or
as a parameter-type specifier). For the context in which type specifiers appear, see IDL.

In the MIDL compiler's default mode, you can assign integer values to enumerators. (This feature is not
available when you compile with the /osf switch.) As with C-language enumerators, enumerator names
must be unique, but the enumerator values need not be.

When assignment operators are not provided, identifiers are mapped to consecutive integers from left to
right, starting with zero. When assignment operators are provided, assigned values start from the most
recently assigned value.

The maximum number of identifiers is 65,535.

Objects of type enum are int types, and their size is system-dependent. By default, objects of enum
types are treated as 16-bit objects of type unsigned short when transmitted over a network. Values
outside the range 0 - 32,767 cause the run-time exception RPC_X_ENUM_VALUE_OUT_OF_RANGE.
To transmit objects as 32-bit entities, apply the v1_enum attribute to the enum typedef.

See Also
IDL, typedef, v1_enum

error_status_t
Remarks

The error_status_t keyword designates a type for an object that contains communication-status or fault-
status information.

The error_status_t type is used as a part of the exception handling architecture in IDL. This type maps to
an unsigned long. Applications that catch error situations have an out parameter or a return type of a
procedure specified as error_status_t, and qualify the error_status_t with the comm_status or
fault_status attributes in the ACF. If the parameter or return type was not qualified with the
comm_status or fault_status attributes, then the parameter operates as though it were an unsigned
long.

The MIDL 2.0 compiler generates stubs that contain the proper error handling architecture. However,
earlier versions of the MIDL compiler handled a parameter or return type of error_status_t as though the
comm_status and fault_status attributes were applied, even if they were not. With the MIDL 2.0
compiler, you must explicitly apply the comm_status and fault_status attributes to the parameter or
procedure in the ACF.

The error_status_t type is one of the predefined types of the interface definition language. Predefined
types can appear as type specifiers in typedef declarations, in general declarations, and in function
declarators (either as the function-return-type or as parameter-type specifiers).

See Also
comm_status, fault_status, IDL

explicit_handle
[explicit_handle] {...}

Example
/* ACF File */
[explicit_handle]
{
};

Remarks

The explicit_handle attribute specifies that each procedure has, as its first parameter, a primitive handle,
such as a handle_t type. This is the case even if the IDL file does not contain the handle in its parameter
list. The prototypes emitted to the header file and stub routines contain the additional parameter, and that
parameter is used as the handle for directing the remote call.

The explicit_handle attribute affects both remote procedures and serialization procedures. For type
serialization, the support routines are generated with the initial parameter as an explicit (serialization)
handle. If the explicit_handle attribute is not used, the application can still specify that an operation have
an explicit handle (binding or serialization) directing the call. To do this, a prototype with an argument
containing a handle type is supplied to the IDL file. Note that in default mode, an argument that does not
appear first can also be used as a handle directing the call. Therefore, while the explicit_handle attribute
is a way of giving the IDL prototype a primitive explicit_handle attribute, it does not necessarily require a
change to the IDL file. In /osf mode only the first argument can be used as an explicit handle type.

The explicit_handle attribute can be used as either an interface attribute or an operation attribute. As an
interface attribute, it affects all the operations in the interface and all the types that require serialization
support. If, however, it is used as an operation attribute, it affects only that particular operation.

See Also
ACF, auto_handle, implicit_handle

fault_status
[fault_status [, ACF-function-attributes]] function-name(

[[ACF-parameter-attributes]] parameter-name
, ...

);

[[ACF-function-attributes]] function-name(
[fault_status [, ACF-parameter-attributes]] parameter-name
...);

ACF-function-attributes

Specifies zero or more ACF function attributes such as fault_status and nocode. Function attributes
are enclosed in square brackets. Note that zero or more attributes can be applied to a function.
Separate multiple function attributes with commas. Also note that if fault_status appears as a
function attribute, it cannot also appear as a parameter attribute.

function-name

Specifies the name of the function as defined in the IDL file.
ACF-parameter-attributes

Specifies attributes that apply to a parameter. Note that zero or more attributes can be applied to the
parameter. Parameter attributes are enclosed in square brackets. Separate multiple parameter
attributes with commas. IDL parameter attributes, such as directional attributes, are not allowed in the
ACF. Note that if fault_status appears as a parameter attribute, it cannot also appear as a function
attribute.

parameter-name

Specifies the parameter for the function as defined in the IDL file. Each parameter for the function
must be specified in the same sequence, using the same name as defined in the IDL file.

Remarks
The fault_status attribute can be used as either a function attribute or as a parameter attribute, but it can
appear only once per function. It can be applied either to the function or to one parameter in each
function.

The fault_status attribute can be applied only to functions that return the type error_status_t. When the
remote procedure fails in a way that causes a fault PDU to be returned, an error code is returned.

When fault_status is used as a parameter attribute, the parameter must be an out parameter of type
error_status_t. If a server error occurs, the parameter is set to the error code. When the remote call is
successfully completed, the procedure sets the value.

The parameter associated with the fault_status attribute does not have to be specified in the IDL file.
When the parameter is not specified, a new out parameter of type error_status_t is generated following
the last parameter defined in the DCE IDL file.

It is possible for both the fault_status and comm_status attributes to appear in a single function, either
as function attributes or parameter attributes. If both attributes are function attributes, or if they apply to
the same parameter and no error occurs, the function or parameter has the value error_status_ok.
Otherwise, it contains the appropriate status code value. Because values returned for fault_status are
different from the values returned for comm_status, the returned values are readily interpreted.

See Also
ACF, comm_status, error_status_t

field_attributes
[[field-attribute-list]] type-specifier declarator-list;

field-attribute-list

Specifies zero or more field attributes that apply to the structure or union member, array, or function
parameter. Valid field attributes include first_is, last_is, length_is, max_is, size_is; the usage
attributes string, ignore, and context_handle; the pointer attribute ref, unique, or ptr; and the union
attribute switch_type. Separate multiple field attributes with commas.

type-specifier

Specifies a base_type, struct, union, or enum type or type identifier. An optional storage
specification can precede type-specifier.

declarator-list

Specifies one or more standard C declarators, such as identifiers, pointer declarators, and array
declarators. Separate multiple declarators with commas.

Remarks
Field attributes are used in structure, union, array, and function-parameter declarators to define
transmission characteristics of the declarator during a remote procedure call.

Field-attribute keywords include size_is, max_is, length_is, first_is, and last_is; the usage attributes
string, ignore, and context_handle; the union switch switch_is;and the pointer attributes ref, unique,
and ptr.

The field attributes size_is, max_is, length_is, first_is, and last_is specify the size or range of valid
data for the declarator. These field attributes associate another parameter, structure member, union
member, or constant expression with the declarator.

Field attributes that are parameters must associate with declarators that are parameters, while field
attributes that are members of structures or unions must associate with declarators that are members of
the same structure or union.

For information about the context in which field attributes appear, see arrays, struct, and union.

See Also
arrays, first_is, IDL, last_is, length_is, max_is, size_is

first_is
first_is(limited-expression-list)

limited-expression-list

Specifies one or more C-language expressions. Each expression evaluates to an integer that
represents the array index of the first array element to be transmitted. The MIDL compiler supports
conditional expressions, logical expressions, relational expressions, and arithmetic expressions. MIDL
does not allow function invocations in expressions and does not allow increment and decrement
operators. Separate multiple expressions with commas.

Example
void Proc1(
 [in] short First,
 [first_is(First)] Arr[10]);

Remarks

The first_is attribute specifies the index of the first array element to be transmitted. If the first_is attribute
is not present, or if the specified index is a negative number, array element zero is the first element
transmitted.

The first_is attribute can also help determine the values of the array indexes corresponding to the last_is
or length_is attribute when these attributes are not specified. The relationship between these array
indexes is:

length = last - first + 1

The following relationship must also hold:

0 <= first_is <= max_is

The following relationship must hold when max_is <= 0:

first_is == 0

The first_is attribute cannot be used at the same time as the string attribute.

Using a constant expression with the first_is attribute is an inappropriate use of the attribute. It is legal,
but inefficient, and will result in slower marshalling code.

See Also
field_attributes, IDL, last_is, length_is, max_is, min_is, size_is

float
Remarks

The float keyword designates a 32-bit floating-point number.

The float type is one of the base types of the interface definition language (IDL). The float type can
appear as a type specifier in typedef declarations, general declarations, and function declarators (as a
function-return-type specifier and a parameter-type specifier). For the context in which type specifiers
appear, see IDL.

The float type cannot appear in const declarations.

See Also
base_types, double

handle
typedef [handle] typename;

handle_t __RPC_USER typename_bind (typename);
void __RPC_USER typename_unbind (typename, handle_t);

typename

Specifies the name of the user-defined binding-handle type.

Examples
typedef [handle] struct {
 char machine[8];
 char nmpipe[256];
 } h_service;

handle_t __RPC_USER h_service_bind(h_service);
void __RPC_USER h_service_unbind(h_service, handle_t);

Remarks

The handle attribute specifies a user-defined or "customized" handle type. User-defined handles permit
developers to design handles that are meaningful to the application.

A user-defined handle can only be defined in a type declaration, not in a function declarator.

A parameter of a type defined by the handle attribute is used to determine the binding for the call and is
transmitted to the called procedure.

The user must provide binding and unbinding routines to convert between primitive and user-defined
handle types. Given a user-defined handle of type typename, the user must supply the routines
typename_bind and typename_unbind. For example, if the user-defined handle type is named
MYHANDLE, the routines are named MYHANDLE_bind and MYHANDLE_unbind.

If successful, the typename_bind routine should return a valid primitive binding handle. If unsuccessful,
the routine should return a NULL. If the routine returns NULL, the typename_unbind routine will not be
called. If the binding routine returns an invalid binding handle different from NULL, the stub behavior is
undefined.

When the remote procedure has a user-defined handle as a parameter or as an implicit handle, the client
stubs call the binding routine before calling the remote procedure. The client stubs call the unbinding
routine after the remote call.

In DCE IDL, a parameter with the handle attribute must appear as the first parameter in the remote
procedure argument list. Subsequent parameters, including other handle attributes, are treated as
ordinary parameters. Microsoft supports an extension to DCE IDL that allows the user-defined handle
parameter to appear in positions other than the first parameter.

See Also
handles, IDL, implicit_handle, typedef

handles
Remarks

Binding handles are data objects that represent the binding between the client and the server.

MIDL supports the base type handle_t. Handles of this type are known as "primitive handles."

You can define your own handle types using the handle attribute. Handles defined in this way are known
as "user-defined" or "customized" handles or "generic handles."

You can also define a handle that maintains state information using the context_handle attribute.
Handles defined in this way are known as "context handles."

If no state information is needed and you do not choose to call the RPC run-time libraries to manage the
handle, you can request that the run-time libraries provide automatic binding. This is done by using the
ACF keyword auto_handle.

You can specify a global variable as the binding handle by using the ACF keyword implicit_handle. The
explicit_handle keyword is used to state that each remote function has an explicitly specified handle.

See Also
auto_handle, base_types, context_handle, explicit_handle, handle, handle_t, implicit_handle

handle_t
Remarks

The handle_t keyword declares an object to be of the primitive handle type handle_t. A primitive binding
handle is a data object that can be used by the application to represent the binding.

The handle_t type is one of the predefined types of the interface definition language (IDL). It can appear
as a type specifier in typedef declarations, general declarations, and function declarators (as a function-
return-type specifier and a parameter-type specifier). For the context in which type specifiers appear, see
IDL.

In Microsoft RPC, parameters of type handle_t can occur only as in parameters. Primitive handles
cannot have the unique or ptr attribute.

Parameters of type handle_t (primitive handle parameters) are not transmitted on the network.

See Also
base_types, handles

heap
The DCE ACF keyword heap is not implemented in Microsoft RPC.

helpcontext
[uuid, helpcontext(helpcontext-value)[,attribute-list]] statement | directive statement-name {definitions}

Example
[uuid(. . .),helpcontext(7035943), helpstring("Hello Class"),appobject]
coclass Hello
 {[default, helpcontext(3914972)] interface IHello : IUnknown;
 interface IDispatch;
 }

Remarks

The helpcontext attribute specifies a context ID that lets the user view information about this element in
the Help file. This attribute can be applied to the following elements: library, importlib, interface,
dispinterface, module, typedef, method, property, coclass.

The helpcontext-value is a 32-bit context identifier within the Help file that can be retrieved with the
GetDocumentation functions in the ITypeLib and ITypeInfo interfaces.

See Also
ODL File Syntax, ODL File Example, Generating a Type Library With MIDL

helpfile
[uuid, helpfile("filename") [, optional-attribute-list]] library {library statements};

Example
[uuid(. . .),helpfile("filename.hlp"),lcid(0x0409), version(2.0)]
library Hello
{ . . .};

Remarks

The helpfile attribute sets the name of the Help file for a type library. All types in a library share the same
Help file.

Use the GetDocumentation functions in the ITypeLib and ITypeInfo interfaces to retrieve the filename.

See Also
library, ODL File Syntax, ODL File Example, Generating a Type Library With MIDL

helpstring
[helpstring("string")[, optional-attribute-list]] odl-statement

Example
 [uuid(. . .),helpstring("Lines 1.0 Type Library"),version(1.0)]
library Lines
{
 [uuid(. . .), helpstring("Line object."),oleautomation,dual]
 interface ILine : IDispatch
 {
 [propget, helpstring("Returns and sets RGB color.")]
 HRESULT Color([out, retval] long* retval);
 [propput, helpstring("Returns and sets RGB color.")]
 HRESULT Color([in] long rgb);
 }
};

Remarks

The helpstring attribute specifies a character string that is used to describe the element to which it
applies. You can apply the helpstring attribute to library, importlib, interface, dispinterface, module, or
coclass statements, typedefs, properties, and methods.

Use the GetDocumentation functions in the ITypeLib and ITypeInfo interfaces to retrieve the help string.

See Also
library, importlib, interface, dispinterface, module, coclass, typedef, ODL File Syntax, ODL File
Example, Generating a Type Library With MIDL

hidden
[other-attributes, hidden] statement-or-function-type statement-or-function-name

Examples
[hidden, vararg]
 SAFEARRAY (int) SecretFunc ([in, out] SAFEARRAY (variant) *varP) ;
[uuid(. . .), hidden, version (3.0)] library HiddenLib {. . .};

Remarks

The hidden attribute indicates that the item exists but should not be displayed in a user-oriented browser.
This attribute allows you to remove members from your interface (by shielding them from further use)
while maintaining compatibility with existing code. You can use the hidden attribute on properties,
methods, and the coclass, dispinterface, interface, and library statements.

When specified for a library, the hidden attribute prevents the entire library from being displayed. This
usage is intended for use with controls. Hosts need to create a new type library that wraps the control with
extended properties.

Flags
VARFLAG_FHIDDEN, FUNCFLAG_FHIDDEN, TYPEFLAG_FHIDDEN

See Also
TYPEFLAGS, dispinterface, coclass, ODL File Syntax, ODL File Example, Generating a Type Library
With MIDL

hyper
Remarks

The keyword hyper indicates a 64-bit integer that can be declared as either signed or unsigned.

The hyper type is one of the base types of the interface definition language (IDL). The hyper type can
appear as a type specifier in const declarations, typedef declarations, general declarations, and function
declarators (as a function-return-type specifier and as a parameter-type specifier). For the context in
which type specifiers appear, see IDL.

Note For 16-bit platforms, the MIDL compiler replaces unsigned hyper integers with MIDL_uhyper.
This allows interfaces with unsigned hyper integers to be defined on platforms that do not directly
support 64-bit integers. MIDL_uhyper is defined in the RPC header files.

See Also
base_types

id
[id(id-num) [,optional-attribute-list]] return-type function-name

Example
Interface IKnown : IUnknown
{
properties:
[id(90), propget, helpstring("A meaningful comment."]
 long Func1(void);
. . .
}

Remarks

The id attribute specifies a DISPID for a member function (either a property or a method, in an interface
or dispinterface). You use the id attribute when you want to assign a standard DISPID (like
DISPID_VALUE, DISPID_NEWENUM etc.) to a method or property, or when you implement your own
IDispatch::Invoke instead of delegating to DispInvoke/ITypeInfo::Invoke.

If you do not use the id attribute, the MIDL compiler will assign a DISPID for you.

The id-num is a 32-bit integral value in the following format:

Bits Value
0-15 Offset. Any value is permissible.
16-21 The nesting level of this typeinfo in the inheritance

hierarchy. For example:
interface mydisp : IDispatch

The nesting level of IUnknown is 0, IDispatch is 1, and
mydisp is 2.

22-25 Reserved; must be zero
26-28 DISPID value.
29 True if this is the member ID for a FuncDesc; otherwise

False.
30-31 Must be 01.

Negative IDs are reserved for use by OLE Automation.

See Also
interface, dispinterface, ODL File Syntax, ODL File Example, Generating a Type Library With MIDL

idempotent
[[[IDL-operation-attributes]]] operation-attribute , ...

IDL-operation-attributes

Specifies zero or more IDL operation attributes such as idempotent and broadcast. Operation
attributes are enclosed in square brackets.

Remarks
An idempotent operation is one that does not modify state information and returns the same results each
time it is performed. Performing the routine more than once has the same effect as performing it once.

RPC supports two types of remote call semantics: calls to idempotent operations and calls to non-
idempotent operations. An idempotent operation can be carried out more than once with no ill effect.
Conversely, a non-idempotent operation (at-most-once) cannot be executed more than once because it
will either return different results each time or because it modifies some state.

To ensure that a procedure is automatically re-executed if the call does not complete, use the idempotent
attribute. If the idempotent, broadcast, or maybe attributes are not present, the procedure will use non-
idempotent semantics by default. In this case, the operation is executed only once.

See Also
broadcast, IDL, maybe, non-idempotent

IDL
[interface-attribute-list] interface interface-name

{
[import import-file-list ; ...]
[cpp_quote("string") ...]

[const const-type identifier = const-expression ; ...]

[[typedef] [[type-attribute-list]] type-specifier declarator-list; ...]

[[[function-attr-list]] type-specifier [pointer-declarator] function-name(
[[parameter-attribute-list]] type-specifier [declarator]
, ...

);
...
]

}

interface-attribute-list

Specifies either the attribute uuid or the attribute local and other optional attributes that apply to the
interface as a whole. The attributes endpoint, version, and pointer_default are optional. When you
compile with the /app_config switch, either implicit_handle or auto_handle can also be present.
Separate multiple attributes with commas. The interface-attribute-list does not have to be present for
imported IDL files, but must be present for the base IDL file.

interface-name

Specifies the name of the interface. The identifier must be unique or different from any type names. It
also must be 17 characters or less because it is used to form the name of the interface handle. The
same interface name must be supplied in the ACF, except when you compile with the /acf switch.

import-file-list

Specifies one or more IDL files to import. Separate filenames with commas.
string

Specifies a string that is emitted in the generated header file.
const-type

Specifies the name of an integer, character, boolean, void *, byte, or string (char *, byte *, wchar_t
*) type. Only these types can be assigned const values in the IDL file.

identifier

Specifies a valid MIDL identifier. Valid MIDL identifiers consist of up to 31 alphanumeric and/or
underscore characters and must start with an alphabetic or underscore character.

const-expression

Specifies a constant declaration. The const-expression must evaluate to the type specified by const-
type. For more information, see const.

type-attribute-list

Specifies one or more attributes that apply to the type. Valid type attributes include handle,

switch_type, transmit_as; the pointer attribute ref, unique, or ptr; and the usage attributes
context_handle, ignore, and string. Separate multiple attributes with commas.

type-specifier

Specifies a base_type, struct, union, enum type, or type identifier. An optional storage specification
can precede type-specifier.

declarator and declarator-list

Specify standard C declarators, such as identifiers, pointer declarators, and array declarators. For
more information, see pointers and arrays. The declarator-list consists of one or more declarators
separated by commas. The parameter declarator in the function declarator, such as the parameter
name, is optional.

function-attr-list

Specifies zero or more attributes that apply to the function. Valid function attributes are callback,
local; the pointer attribute ref, unique, or ptr; and the usage attributes string, ignore, and
context_handle.

pointer-declarator

Specifies zero or more pointer declarators. A pointer declarator is the same as the pointer declarator
used in C and is is constructed from the * designator, modifiers such as far and the qualifier const.

function-name

Specifies the name of the remote procedure.
parameter-attribute-list

Specifies zero or more attributes appropriate for the specified parameter type. Parameter attributes
can take the directional attributes in and out; the field attributes first_is, last_is, length_is, max_is,
size_is, and switch_type; the pointer attribute ref, unique, or ptr; and the usage attributes
context_handle and string. The usage attribute ignore cannot be used as a parameter attribute.
Separate multiple attributes with commas.

Examples
[uuid(12345678-1234-1234-1234-123456789ABC),
 version(3.1),
 pointer_default(unique)
] interface IdlGrammarExample
{
import "windows.idl", "other.idl";
const wchar_t * NAME = L"Example Program";
typedef char * PCHAR;

void DictCheckSpelling(
 [in, string] PCHAR word, // word to look up
 [out] short * isPresent // 0 if not present
);
}

Remarks

The IDL file contains the specification for the interface. The interface includes the set of data types and
the set of functions to be executed from a remote location. Interfaces specify the function prototypes for
remote functions and for many aspects of their behavior from the point of view of interface users.

Another file, the application configuration file (ACF), contains attributes that tailor the application for a
specific operating environment. For more information, see ACF.

An interface specification consists of an interface header followed by an interface body. The interface
header includes an attribute list describing characteristics that apply to the interface as a whole. The
interface body contains the remote data types and function prototypes. The interface body also contains
zero or more import lists, constant declarations, general declarations, and function declarators.

In Microsoft RPC, an IDL file can contain multiple interfaces and these interfaces can be forward declared
(within the IDL file that defines them). For example:

interface ITwo; //forward declaration
interface IOne {
...uses ITwo...
}
interface ITwo {
...uses IOne...
}

Type definitions, construct declarations, and imports can occur outside of the interface body. All definitions
from the main IDL file will appear in the generated header file, and all the procedures from all the
interfaces in the main IDL file will generate stub routines. This enables applications that support multiple
interfaces to merge IDL files into a single, combined IDL file.

As a result, it requires less time to compile the files and also allows MIDL to reduce redundancies in the
generated stubs. This can significantly improve object interfaces through the ability to share common
code for base interfaces and derived interfaces. For non-object interfaces, the procedure names must be
unique across all the interfaces. For object interfaces, the procedure names only need to be unique
within an interface. Note that multiple interfaces are not permitted when you use the /osf switch.

The syntax for declarative constructs in the IDL file is similar to that for C. MIDL supports all Microsoft
C/C++ declarative constructs except:

· Older style declarators that allow a declarator to be specified without a type specifier, such as:
x (y)
short x (y)

· Declarations with initializers (MIDL only accepts declarations that conform to the MIDL const syntax).

The import keyword specifies the names of one or more IDL files to import. The import directive is similar
to the C include directive, except that only data types are assimilated into the importing IDL file.

The constant declaration specifies boolean, integer, character, wide-character, string, and void *
constants. For more information, see const.

A general declaration is similar to the C typedef statement with the addition of IDL type attributes. Except
in /osf mode, the MIDL compiler also allows an implicit declaration in the form of a variable definition.

The function declarator is a special case of the general declaration. You can use IDL attributes to specify
the behavior of the function return type and each of the parameters.

See Also
arrays, const, enum, import, in, interface, MIDL Language Reference, out, pointers, struct, union

ignore
[ignore] pointer-member-type pointer-name;

pointer-member-type

Specifies the type of the pointer member of the structure or union.
pointer-name

Specifies the name of the pointer member that is to be ignored during marshalling.

Example
typedef struct _DBL_LINK_NODE_TYPE {
 long value;
 struct _DBL_LINK_NODE_TYPE * next;
 [ignore] struct _DBL_LINK_NODE_TYPE * previous;
} DBL_LINK_NODE_TYPE;

Remarks

The ignore attribute designates that a pointer contained in a structure or union and the object indicated
by the pointer is not transmitted. The ignore attribute is restricted to pointer members of structures or
unions.

The value of a structure member with the ignore attribute is undefined at the destination. An in parameter
is not defined at the remote computer. An out parameter is not defined at the local computer.

The ignore attribute allows you to prevent transmisison of data. This is useful in situations such as a
double-linked list. The following example includes a double-linked list that introduces data aliasing:

/* IDL file */
typedef struct _DBL_LINK_NODE_TYPE {
 long value;
 struct _DBL_LINK_NODE_TYPE * next;
 struct _DBL_LINK_NODE_TYPE * previous;
} DBL_LINK_NODE_TYPE;

void remote_op([in] DBL_LINK_NODE_TYPE * list_head);

/* application */
DBL_LINK_NODE_TYPE * p, * q

p = (DBL_LINK_NODE_TYPE *)
 midl_user_allocate(sizeof(DBL_LINK_NODE_TYPE));
q = (DBL_LINK_NODE_TYPE *)
 midl_user_allocate(sizeof(DBL_LINK_NODE_TYPE));

p->next = q;
q->previous = p;
p->previous = q->next = NULL;
..
remote_op(p);

Aliasing occurs in the preceding example because the same memory area is available from two different

pointers in the function p and p->next->previous.

Note that ignore cannot be used as a type attribute.

See Also
pointers, ptr, ref, unique

iid_is
[iid_is(limited-expression)]

limited-expression

Specifies a C-language expression. The MIDL compiler supports conditional expressions, logical
expressions, relational expressions, and arithmetic expressions. MIDL does not allow function
invocations in expressions and does not allow increment and decrement operators.

Example
HRESULT CreateInstance(
 [in] REFIID riid,
 [out, iid_is(riid)] IUnknown ** ppvObject);

Remarks

The iid_is pointer attribute specifies the IID of the OLE interface pointed to by an interface pointer. You
can use iid_is in attribute lists for function parameters and for structure or union members. The stubs use
the IID to determine how to marshal the interface pointer. This is useful for an interface pointer that is
typed as a base class parameter.

Files that use the iid_is attribute must be compiled with the MIDL compiler in default mode, that is not
using the /osf switch.

See Also
object, uuid

immediatebind
[interface-attribute-list] interface | dispinterface interface-name

{
[bindable, immediatebind[, optional-attribute-list]] returntype function-name(params)
}

Example
[uuid(. . .)] interface MyObject : IUnknown
{
 properties:
 methods:
 [id(1), propget, bindable, immediatebind]
 long Size(void);

 [id(1), propput, bindable, immediatebind]
 void Size([in]long lSize);
}

Remarks

The immediatebind attribute indicates that the database will be notified immediately of all changes to a
property of a data-bound object.

This attribute allows controls to differentiate between properties that need to notify the database of every
change, and those that do not. For example, every change to a checkbox control should be sent to the
underlying database immediately, even if the control has not lost the focus. However, for a listbox control,
a change occurs whenever a different selection is highlighted. Notifying the database of a change before
the control loses focus would be inefficient and unnecessary. The immediatebind attribute allows
individual properties on a form to specify, by setting the ImmediateBind bit, that changes should be
reported immediately.

Properties that have the immediatebind attribute must also have the bindable attribute.

Flags
FUNCFLAG_FIMMEDIATEBIND, VARFLAG_FIMMEDIATEBIND

See Also
bindable, TYPEFLAGS, interface, dispinterface, ODL File Syntax, ODL File Example, Generating a
Type Library With MIDL

implicit_handle
implicit_handle(handle-type handle-name)

handle-type

Specifies the handle data type, such as the base type handle_t or a user-defined handle type.
handle-name

Specifies the name of the handle.

Example
/* ACF file */
[implicit_handle(handle_t hMyHandle)]
{
}

Remarks

The implicit_handle attribute specifies the handle used for functions that do not include an explicit
handle as a procedure parameter. If the procedure is remote, the handle will be used as the binding
handle for the remote call. The implicit handle may also be used to establish an initial binding for a
function that uses a context handle. If the procedure is a serializing procedure, the handle is used as a
serializing handle controlling the operation. In the case of type serialization, the handle is used as the
serialization handle for all the serialized types.

The implicit_handle attribute specifies a global variable that contains a handle used by any function
needing implicit handles.

The implicit binding handle type must be either handle_t (or a type based on handle_t) or a user-defined
handle type specified with the handle attribute. The implicit serializing handle must be a type based on
handle_t.

If the implicit handle type is not defined in the IDL file or in any files included and imported by the IDL file
for the MIDL computer, you must supply the file containing the handle-type definition when you compile
the stubs. Use the ACF include statement to include the file containing the handle-type definition.

The implicit_handle attribute can occur once, at most. The implicit_handle attribute can occur only if
the auto_handle or explicit_handle attribute does not occur.

See Also
ACF, auto_handle, explicit_handle, include

import
import "filename" [, ...] ;

filename

Specifies the name of the header or IDL file to import.

Examples
import "recycled.idl";
import "system.h";
import "unknwn.idl";
import "part1.idl", "part2.idl", "part3.idl";

Remarks

The import directive specifies another .IDL file containing definitions you wish to reference from the
main .IDL file. The imported file is processed separately from the main IDL file and the CPP preprocessor
is invoked independently on this file. All resultant type, constant, and interface definitions are available to
the main .IDL file. This implies that CPP directives like #define do not carry over from an imported IDL file
to the main IDL file, and vice versa

IDL statements, such as const declarations, typedefs, and interfaces become available to the importing
file.

Similar to the C-language preprocessor macro #include, the import directive directs the compiler to
include data types defined in the imported IDL files. Unlike the #include directive, the import directive
ignores procedure prototypes, since no stubs are generated for anything in the imported file.

The import keyword is optional and can appear zero or more times in the IDL file. Each import keyword
can be associated with more than one file name. Separate multiple filenames with commas. You must
enclose the file name within quotation marks and end the import statement with a semicolon (;). Note that
an interface without attributes can be imported into a base IDL file. However, the interface must contain
only datatypes with no procedures. If even one procedure is contained in the interface, a local or UUID
attribute must be specified.

The C-language header (.H) file generated for the interface does not directly contain the imported types
but instead generates a #include directive for the header file corresponding to the imported interface. For
example, when FOO.IDL imports BAR.IDL, the generated header file FOO.H includes BAR.H (FOO.H
contains the directive #include BAR.H).

The import function is idempotent ¾ that is, importing an interface more than once has no effect.

The behavior of the import directive is independent of the MIDL compiler mode switches /osf, and
/app_config. However, pointer attribute decoration across imports may depend on the compiler mode
(/osv vs. the default, /ms_ext). For details see Pointer-Attribute Type Inheritance.

See Also
IDL, Importing System Header Files, Importing Other IDL Files, /ms_ext, /osf

importlib
library (library-name){ importlib(file-to-import) }

file-to-import

The name and location of the imported file at MIDL compile-time.

Example
library BrowseHelper
{
 importlib("stdole.tlb");
 importlib("mydisp.tlb");
//remainder of library definition
};

Remarks

The importlib directive makes types that have already been compiled into another type library available
to the library being created. All importlib directives must precede the other type descriptions in the library.

Note Because the importlib directive makes any type defined in the imported library accessible
from within the library being compiled, ambiguity is resolved as follows. If the imported libraries
contain duplicate references, MIDL will use the last reference that it finds. This is in contrast to
MKTYPLIB, which uses the first reference that it finds.

The imported type library should be distributed with the library being compiled.

See Also
library, ODL File Syntax, ODL File Example, Generating a Type Library With MIDL

in
[[function-attribute-list]] type-specifier [pointer-declarator] function-name(

[in [, parameter-attribute-list]] type-specifier [declarator]
, ...

);

function-attribute-list

Specifies zero or more attributes that apply to the function. Valid function attributes are callback,
local, the pointer attribute ref, unique, or ptr, and the usage attributes string, ignore, and
context_handle.

type-specifier

Specifies a base_type, struct, union, or enum type or type identifier. An optional storage
specification can precede type-specifier.

pointer-declarator

Specifies zero or more pointer declarators. A pointer declarator is the same as the pointer declarator
used in C; it is constructed from the * designator, modifiers such as far, and the qualifier const.

function-name

Specifies the name of the remote procedure.
parameter-attribute-list

Specifies zero or more attributes appropriate for the specified parameter type. Parameter attributes
with the in attribute can also take the directional attribute out; the field attributes first_is, last_is,
length_is, max_is, size_is and switch_type; the pointer attribute ref, unique, or ptr; and the usage
attributes context_handle and string. The usage attribute ignore cannot be used as a parameter
attribute. Separate multiple attributes with commas.

declarator

Specifies standard C declarators, such as identifiers, pointer declarators, and array declarators. For
more information, see pointers and arrays. The parameter declarator in the function declarator, such
as the parameter name, is optional.

Example
void MyFunction([in] short count);

Remarks

The in attribute indicates that a parameter is to be passed from the calling procedure to the called
procedure.

A related attribute, out, indicates that a parameter is to be returned from the called procedure to the
calling procedure. The in and out attributes are known as directional parameter attributes because they
specify the direction in which parameters are passed. A parameter can be defined as in, out, or in, out.

The in attribute identifies parameters that are marshalled by the client stub for transmission to the server.

The in attribute is applied to a parameter by default when no directional parameter attribute is specified.

See Also
IDL, midl_user_allocate, out

include
include filenames;

filenames

Specifies the name of one or more C-language header files. The .H extension must be supplied in the
MS-DOS, 16-bit Windows, and 32-bit Windows environments. Separate multiple C-language header
filenames with commas.

Remarks
The body of the ACF can contain include directives, ACF typedef attributes, and ACF function and
parameter attributes.

The ACF include statement specifies one or more header files included in the generated stub code. The
stub code contains a C-preprocessor #include statement, and the user supplies the C-language header
file when compiling the stubs. Include statements rely on the C-compiler mechanism of searching the
directory structure for included files.

Note Use the import directive rather than the include directive for system files, such as
WINDOWS.H, that contain data types you want to make available to the IDL file. The import directive
ignores function prototypes and allows you to use MIDL compiler switches that optimize the
generation of support routines.

See Also
ACF, import, typedef

in_line
The DCE IDL keyword in_line is not supported in Microsoft RPC.

See Also
IDL

int
[type-specifier] [signed | unsigned] integer-modifier [int] declarator-list;

type-specifier

Specifies a base_type, struct, union, enum type, or type identifier. An optional storage specification
can precede type-specifier.

integer-modifier

Specifies the keyword small, short, long, or hyper, which selects the size of the integer data. On 16-
bit platforms, the size qualifier must be present.

declarator-list

Specifies one or more standard C declarators, such as identifiers, pointer declarators, and array
declarators. (Function declarators and bit-field declarations are not allowed in structures that are
transmitted in remote procedure calls. These declarators are allowed in structures that are not
transmitted.) Separate multiple declarators with commas.

Examples
signed short int i = 0;
int j = i;
typedef struct {
 small int i1;
 short i2;
 unsigned long int i3;
} INTSIZETYPE;

void MyFunc([in] long int lCount);

Remarks

On 32-bit platforms, the keyword int specifies a 32-bit signed integer. On 16-bit platforms, the keyword int
is an optional keyword that can accompany the keywords small, short, and long.

Integer types are among the base types of the interface definition language (IDL). They can appear as
type specifiers in typedef declarations, general declarations, and function declarators (as a function-
return-type specifier and as a parameter-type specifier). For the context in which type specifiers appear,
see IDL.

If no integer sign specification is provided, the integer type defaults to signed.

DCE IDL compilers do not allow the keyword signed to specify the sign of integer types. Therefore, this
feature is not available when you use the MIDL compiler /osf switch.

See Also
base_types, long, /osf, short, small

__int64
The keyword __int64 specifies a valid integer supported by the MIDL compiler. For a discussion of how to
use __int64, see hyper.

See Also
IDL, int

interface
[interface-attribute-list] interface interface-name [: base-interface]

/*IDL file typedef syntax */
typedef interface interface-name declarator-list

interface-attribute-list

Specifies attributes that apply to the interface as a whole. Valid interface attributes for an IDL file
include endpoint, local, object, pointer_default, uuid, and version. Valid interface attributes for an
ACF include encode, decode, either auto_handle or implicit_handle, and either code or nocode.

interface-name

Specifies the name of the interface. The identifier must start with an alphabetic or underscore
character and can consist of up to 17 alphanumeric and underscore characters. The identifier must be
17 characters or less because it is used to form the name of the interface handle.

base-interface

Specifies the name of an interface from which this derived interface inherits member functions, status
codes, and interface attributes. The derived interface does not inherit type definitions. To do this, use
the import keyword to import the IDL file of the base interface.

declarator-list

Specifies standard C declarators, such as identifiers, pointer declarators, and array declarators. For
more information, see pointers and arrays. The declarator-list consists of one or more declarators,
separated by commas.

Examples
/* use of interface keyword in IDL file for an RPC interface */
 [uuid (00000000-0000-0000-0000-000000000000),
 version (1.0)]
 interface remote_if_2
 {
 }

/* use of interface keyword in ACF for an RPC interface */
 [implicit_handle(handle_t xa_bhandle)]
 interface remote_if_2
 {
 }

/* use of interface keyword in IDL file for an OLE interface */
 [object, uuid (00000000-0000-0000-0000-000000000000)]
 interface IDerivedInterface : IBaseInterface
 {
 import "base.idl"
 Save();
 }

/* use of interface keyword to define an interface pointer type */
 typedef interface IStorage *LPSTORAGE;

Remarks
The interface keyword specifies the name of the interface. The interface name must be provided in both
the IDL file and the ACF.

The interface names in the IDL file and ACF must be the same, except when you use the MIDL compiler
switch /acf. For more information, see /acf.

The interface name forms the first part of the name of interface-handle data structures that are
parameters to the RPC run-time functions. For more information, see RPC_IF_HANDLE.

If the interface header includes the object attribute to indicate an OLE interface, it must also include the
uuid attribute and must specify the base OLE interface from which it is derived. For more information
about OLE interfaces, see object.

You can also use the interface keyword with the typedef keyword to define an interface data type.

See Also
ACF, endpoint, IDL, local, pointer_default, uuid, version

last_is
[last_is(limited-expression-list)]

limited-expression-list

Specifies one or more C-language expressions. Each expression evaluates to an integer that
represents the array index of the last array element to be transmitted. The MIDL compiler supports
conditional expressions, logical expressions, relational expressions, and arithmetic expressions. MIDL
does not allow function invocations in expressions and does not allow increment and decrement
operators. Separate multiple expressions with commas.

Example
proc1(
 [in] short Last,
 [in, last_is(Last)] short asNumbers[MAXSIZE]);

Remarks

The field attribute last_is specifies the index of the last array element to be transmitted. When the
specified index is zero or negative, no array elements are transmitted.

The last_is attribute determines the value of the array index corresponding to the length_is attribute
when length_is is not specified. The relationship between these array indexes is as follows:

length = last - first + 1

If the value of the array index specified by first_is is larger than the value specified by last_is, zero
elements are transmitted.

The last_is attribute cannot be used as a field attribute at the same time as the length_is attribute or the
string attribute.

Using a constant expression with the last_is attribute is an inappropriate use of the attribute. It is legal,
but inefficient, and will result in slower marshalling code.

When the value specified by max_is is equal to or greater than zero, the following relationship must be
true:

0 <= last_is <= max_is

See Also

field_attributes, first_is, IDL, length_is, max_is, size_is

lcid
[uuid, lcid(numid)[, optional-attribute-list]] library { }

Examples
[uuid(. . .),lcid(0x09),version(1.0)]
library MyLibrary
{. . .};

interface IMyFace : IDispatch
{
[propget] HRESULT MyFunc([in, lcid] long LocaleID,
 [out, retval] BSTR * retval);
. . .
}

Remarks
The lcid attribute identifies the locale for a type library or for a function argument.

The numid is a 32-bit locale ID as used in Win32 National Language Support. The locale ID is typically
entered in hexadecimal.

The MIDL compiler accepts the following parameter ordering (from left-to-right):

1. Required parameters (parameters that do not have the defaultvalue or optional attributes),
2. optional parameters with or without the defaultvalue attribute,
3. parameters with the optional attribute and without the defaultvalue attribute,
4. lcid parameter, if any,
5. retval parameter

See Also
library, ODL File Syntax, ODL File Example, Generating a Type Library With MIDL

length_is
[length_is(limited-expression-list)]

limited-expression-list

Specifies one or more C-language expressions. Each expression evaluates to an integer that
represents the number of array elements to be transmitted. The MIDL compiler supports conditional
expressions, logical expressions, relational expressions, and arithmetic expressions. MIDL does not
allow function invocations in expressions and does not allow increment and decrement operators.
Separate multiple expressions with commas.

Examples
/* counted string holding at most "size" characters */
typedef struct {
 unsigned short size;
 unsigned short length;
 [size_is(size), length_is(length)] char string[*];
 } COUNTED_STRING_TYPE;

/* counted string holding at most 80 characters */
typedef struct {
 unsigned short length;
 [length_is(length)] char string[80];
 } STATIC_COUNTED_STRING_TYPE;

void Proc1(
 [in] short iLength;
 [in, length_is(iLength)] short asNumbers[10];

Remarks

The length_is attribute specifies the number of array elements to be transmitted. A non-negative value
must be specified.

The length_is attribute determines the value of the array indexes corresponding to the last_is attribute
when last_is is not specified. The relationship between these array indexes is as follows:

length = last - first + 1

The length_is attribute cannot be used at the same time as the last_is attribute or the string attribute.

To define a counted string with a length_is or last_is attribute, use a character array or pointer without
the string attribute.

Using a constant expression with the length_is attribute is an inappropriate use of the attribute. It is legal,
but inefficient, and will result in slower marshalling code.

See Also
field_attributes, first_is, IDL, last_is, max_is, min_is, size_is

library
[uuid [, optional-attribute-list]] library libname {definitions};

optional-attribute-list

Specifies additional attributes that apply to the entire library statement. Allowable attributes include
control, helpcontext, helpfile, helpstring, hidden, lcid, restricted, and version.

libname

The name by which the type library is known.
definitions

Descriptions of any imported libraries, data types, modules, interfaces, dispinterfaces, and coclasses
relevant to the object being exposed.

Example
[uuid(. . .), helpstring("Hello 2.0 Type Library"),
 lcid(0x0409), version(2.0)]
library Hello
{. . .};

Remarks

The library statement contains all the information that the MIDL compiler uses to generate a type library.
In addition to elements defined inside of the library block, statements inside the library block can use
elements that are declared outside of the library block by using those elements as base types, inheriting
from those elements, or by simply referencing them on a line, as follows:

interface MyFace {. . .};
[library attributes] library
{
interface My Face;
};

The MIDL compiler will create a type library that includes definitions for every element inside the library
block, plus definitions for any elements defined outside and referenced from within the library block.

For information on generating both a type library and proxy stubs and headers from a single IDL file see
Generating a Proxy DLL and a Type Library From a Single IDL File.

See Also
Generating a Type Library With MIDL, Contents of a Type Library, ODL File Syntax

licensed
[attribute-list]coclass classname {coclass-definitions];

Example
[uuid(. . .), licensed, helpstring("A meaningfulcomment"] coclass MyClass
{. . .};

Remarks

The licensed attribute indicates that the coclass to which it applies is licensed, and must be instantiated
using IClassFactory2.

Licensing is a feature of COM that provides control over object creation. Licensed objects can be created
only by clients that are authorized to use them. Licensing is implemented in COM through the
IClassFactory2 interface and by support for a license key that can be passed at run time.

Flags
TYPEFLAG_FLICENSED

See Also
coclass, Generating a Type Library With MIDL, Contents of a Type Library, ODL File Syntax,
TYPEFLAGS

local
[local [, interface-attribute-list]] interface interface-name

[object, uuid(string-uuid), local [, interface-attribute-list]]
 interface interface-name

[local [, function-attribute-list]] function-declarator ;

interface-attribute-list

Specifies other attributes that apply to the interface as a whole. The attributes endpoint, version,
and pointer_default are optional. When you compile with the /app_config switch, either
implicit_handle or auto_handle can also be present. Separate multiple attributes with commas.

interface-name

Specifies the name of the interface.
string-uuid

Specifies a UUID string generated by the uuidgen utility. If you are not using the MIDL compiler
switch /osf, you can enclose the UUID string in quotes.

function-attribute-list

Specifies zero or more attributes that apply to the function. Valid function attributes are callback; the
pointer attribute ref, unique, or ptr; and the usage attributes string, ignore, and context_handle.
Separate multiple attributes with commas.

function-declarator

Specifies the type specifier, function name, and parameter list for the function.

Examples
/* IDL file #1 */
[local] interface local_procs
{ void MyLocalProc(void);}

/* IDL file #2 */
[object,
 uuid(12345678-1234-1234-123456789ABC),
 local] interface local_object_procs
{ void MyLocalObjectProc(void);}

/* IDL file #3 */
[uuid(12345678-1234-1234-123456789ABC)]
interface mixed_procs
{
[local] void MyLocalProc(void);
void MyRemoteProc([in] short sParam);
}

Remarks

The local attribute can be applied to individual functions or to the interface as a whole.

When used in the interface header, the local attribute allows you to use the MIDL compiler as a header

generator. The compiler does not generate stubs for any functions and does not ensure that the header
can be transmitted.

For an RPC interface, the local attribute cannot be used at the same time as the uuid attribute. Either
uuid or local must be present in the interface header, and the one you choose must occur exactly once.

For an OLE interface (identified by the object interface attribute), the interface attribute list can include
the local attribute even though the uuid attribute is present.

When used in an individual function, the local attribute designates a local procedure for which no stubs
are generated. Using local as a function attribute is a Microsoft extension to DCE IDL. Therefore this
attribute is not available when you compile using the MIDL /osf switch.

Note that an interface without attributes can be imported into a base IDL file. However, the interface must
contain only datatypes with no procedures. If even one procedure is contained in the interface, a local or
UUID attribute must be specified.

See Also
IDL, /osf, object, uuid

long
The long keyword designates a 32-bit integer. It can be preceded by either the keyword signed or the
keyword unsigned. The int keyword is optional and can be omitted. To the MIDL compiler, a long integer
is signed by default and is synonymous with signed long int. On 32-bit platforms, long is synonymous
with int.

The long integer type is one of the base types of the IDL language. The long integer type can appear as
a type specifier in const declarations, typedef declarations, general declarations, and function
declarators (as a function-return-type specifier and as a parameter-type specifier). For the context in
which type specifiers appear, see IDL.

See Also
base_types, hyper, int, short, small

max_is
[max_is(limited-expression-list)]

limited-expression-list

Specifies one or more C-language expressions. Each expression evaluates to an integer that
represents the highest valid array index. The MIDL compiler supports conditional expressions, logical
expressions, relational expressions, and arithmetic expressions. MIDL does not allow function
invocations in expressions and does not allow increment and decrement operators. Separate multiple
expressions with commas.

Examples
/* if m = 10, there are 11 transmitted elements (a[0]...a[10])*/
void Proc1(
 [in] short m,
 [in, max_is(m)] short a[]);

/* if m = 10, the valid range for b is b[0...10][20] */
void Proc2(
 [in] short m,
 [in, max_is(m)] short b[][20];

Remarks

The max_is attribute designates the maximum value for a valid array index. For an array of size n in C,
where the first array element is element number zero, the maximum value for a valid array index is n-1.

The max_is attribute cannot be used as a field attribute at the same time as the size_is attribute.

While it is legal to use the max_is attribute with a constant expression, doing so is inefficient and
unnecessary. For example, use a fixed size array:

/* transmits values of a[0]... a[MAX_SIZE-1] */
void Proc3([in] short Arr[MAX_SIZE]);

instead of:

/* legal but marshalling code is much slower */
void Proc3([in max_is(MAX_SIZE-1)] short Arr[]);

See Also

field_attributes, IDL, min_is, size_is

maybe
[[[IDL-operation-attributes]]] operation-attribute , ...

IDL-operation-attributes

Specifies zero or more IDL operation attributes, such as maybe and idempotent. Operation
attributes are enclosed in square brackets.

Remarks
The keyword maybe indicates that the remote procedure call does not need to execute every time it is
called and the client does not expect a response. Note that the maybe protocol ensures neither delivery
nor completion of the call.

A call with the maybe attribute cannot contain output parameters and is implicitly an idempotent call.

See Also
broadcast, idempotent, IDL, non-idempotent

midl_user_allocate
void __RPC_FAR * __RPC_API midl_user_allocate (size_t cBytes);

cBytes

Specifies the count of bytes to allocate.

Example
void __RPC_FAR * __RPC_API midl_user_allocate(size_t cBytes)
{
 return(malloc(cBytes));
}

Remarks

Both client applications and server applications must implement the midl_user_allocate function, unless
you are compiling in OSF-compatibility (/osf) mode. Applications and generated stubs call
midl_user_allocate when dealing with objects referenced by pointers:

· The server application should call midl_user_allocate to allocate memory for the application ¾ for
example, when creating a new node.

· The server stub calls midl_user_allocate when unmarshalling pointed-at data into the server
address space.

· The client stub calls midl_user_allocate when unmarshalling data from the server that is referenced
by an out pointer. Note that for in, out, and unique pointers, the client stub calls midl_user_allocate
only if the unique pointer value was NULL on input and changes to a non-null value during the call. If
the unique pointer was non-null on input, the client stub writes the associated data into existing
memory.

If midl_user_allocate fails to allocate memory, it must return a null pointer.

It is recommended that midl_user_allocate return a pointer that is 8 bytes aligned.

See Also
allocate, midl_user_free, pointers, ptr, ref, unique

midl_user_free
void __RPC_API midl_user_free(void __RPC_FAR * p);

Example
void __RPC_API midl_user_free(void __RPC_FAR * p)
{
 free(p);
}

Remarks

Both client application and server application must implement the midl_user_free function, unless you
are compiling in OSF-compatibility (/osf) mode. The midl_user_free function must be able to free all
storage allocated by midl_user_allocate.

Applications and stubs call midl_user_free when dealing with objects referenced by pointers:

· The server application should call midl_user_free to free memory allocated by the application ¾ for
example, when deleting a specified node.

· The server stub calls midl_user_free to release memory on the server after marshalling all out
arguments, in, out arguments, and the return value.

See Also
midl_user_allocate, pointers, unique

min_is
The DCE IDL attribute min_is is not implemented in Microsoft RPC. The value of the minimum valid array
index is zero.

See Also
arrays, IDL, max_is

module
[attributes] module modulename {elementlist};

attributes

The uuid, version, helpstring, helpcontext, hidden, and dllname attributes are accepted before a
module statement. See "Attribute Descriptions," in the Ole Automation book, for more information on
the attributes accepted before a module definition. The dllname attribute is required. If the uuid
attribute is omitted, the module is not uniquely specified in the system.

modulename

The name of the module.
elementlist

List of constant definitions and function prototypes for each function in the DLL. Any number of
function definitions can appear in the function list. A function in the function list has the following form:
[attributes] returntype [calling convention] funcname(params);
[attributes] const constname = constval;

Only the helpstring and helpcontext attributes are accepted for a const.
The following attributes are accepted on a function in a module: helpstring, helpcontext, string,
entry, propget, propput, propputref, vararg. If vararg is specified, the last parameter must be a
safe array of VARIANT type.
The optional calling convention can be one of __pascal/_pascal/pascal, __cdecl/_cdecl/cdecl, or
__stdcall/_stdcall/stdcall. The calling convention can include up to two leading underscores.
The parameter list is a comma-delimited list of:
[attributes] type paramname

The type can be any previously declared type or built-in type, a pointer to any type, or a pointer to a
built-in type. Attributes on parameters are:
in, out, optional
If optional is used, the types of those parameters must be VARIANT or VARIANT *.

Example
[uuid(. . .),
 helpstring("This is not GDI.EXE"), helpcontext(190),
 dllname("MATH.DLL")]
module somemodule{
 [helpstring("Color for the frame")] unsigned long const COLOR_FRAME
 = 0xH80000006;
 [helpstring("Not a rectangle but a square"), entry(1)] pascal double
square([in] double x);
};

Remarks

The module statement defines a group of functions, typically a set of DLL entry points. The header file
(.H) output for modules is a series of function prototypes. The module keyword and surrounding brackets
are stripped from the header (.H) file output, but a comment (// module modulename) is inserted before
the prototypes. The keyword extern is inserted before the declarations.

See Also
Generating a Type Library With MIDL, Contents of a Type Library, ODL File Syntax, TYPEFLAGS

ms_union
[..., ms_union, ...] interface-name {...}

interface-name

Specifies the name of the interface.

Example
[ms_union] long procedure (...);

Remarks

The keyword ms_union is used to control the NDR alignment of nonencapsulated unions.

The MIDL compiler in this version of Microsoft RPC mirrors the behavior of the OSF DCE IDL compiler for
nonencapsulated unions. However, because earlier versions of the MIDL compiler did not do so, the
/ms_union switch provides compatibility with interfaces built on previous versions of the MIDL compiler.

The ms_union feature can be used as an IDL interface attribute, an IDL type attribute, or as a command-
line switch (/ms_union).

See Also
IDL, /ms_union

ncacn_at_dsp
endpoint("ncacn_at_dsp:[port-name]")

port-name

Specifies a character string up to 22 bytes long.

Example
[uuid(12345678-4000-2006-0000-20000000001a),
 version(1.1),
 endpoint("ncacn_at_dsp:[my_services_endpoint]")
]

Remarks

The ncacn_at_dsp keyword identifies Appletalk DSP as the protocol family for the endpoint.

The syntax of the Appletalk DSP port string, like all port strings, is defined by the transport implementation
and is independent of the IDL specification. The MIDL compiler performs limited syntax checking but does
not guarantee that the endpoint specification is correct. Some classes of errors may be reported at run
time rather than compile time.

See Also
endpoint, IDL, string_binding

ncacn_dnet_nsp
endpoint("ncacn_dnet_nsp:server-name[port-name]")

server-name

Specifies the name or internet address for the server, or host, computer. The name is a character
string.

port-name

Specifies a DECnet object name or object number. The object name can consist of up to 16
characters. Object numbers can be prefixed by the pound sign (#).

Examples
[uuid(12345678-4000-2006-0000-20000000001a),
 version(1.1),
 endpoint("ncacn_dnet_nsp:node[RPC0034501]")

[uuid(12345678-4000-2006-0000-20000000001a),
 version(1.1),
 endpoint("ncacn_dnet_nsp:node[#41]")
]

Remarks

The ncacn_dnet_nsp keyword identifies DECnet as the protocol family for the endpoint.

The syntax of the DECnet transport port string, like all port strings, is defined independently of the IDL
specification. The compiler performs some syntax checking but does not guarantee that the endpoint
specification is correct. Some errors may be reported at run time.

See Also
endpoint, string_binding

ncacn_ip_tcp
endpoint("ncacn_ip_tcp:server-name[port-name]")

server-name

Specifies the name or Internet address for the server, or host, computer. The name is a character
string. The Internet address is a common Internet address notation.

port-name

Specifies an optional 16-bit number. Values of less than 1024 are usually reserved. If no value is
specified, the endpoint-mapping service selects a valid port-name value.

Example
[uuid(12345678-4000-2006-0000-20000000001a),
 version(1.1),
 endpoint("ncacn_ip_tcp:rainier[1404]")
] interface foo

endpoint("ncacn_ip_tcp:128.10.2.30[1404]")

Remarks

The ncacn_ip_tcp keyword identifies TCP/IP as the protocol family for the endpoint.

The syntax of the TCP/IP transport port string, like all port strings, is defined independently of the IDL
specification. The compiler performs some syntax checking but does not guarantee that the endpoint
specification is correct. Some errors may be reported at run time rather than during compilation.

See Also
endpoint, IDL, ncacn_nb_tcp, ncacn_np, ncacn_spx, ncalrpc, string_binding

ncacn_nb_ipx
endpoint("ncacn_nb_ipx:[port-name]")

port-name

Specifies an optional 8-bit value ranging from zero to 255. Values of less than 0x20 are reserved. If
the port-name value is not specified, the endpoint-mapping service selects the port value.

Example
[uuid(12345678-4000-2006-0000-20000000001a),
 version(1.1),
 endpoint("ncacn_nb_ipx:[100]")
]

Remarks

The ncacn_nb_ipx keyword identifies NetBIOS over IPX as the protocol family for the endpoint.

The syntax of the NetBIOS port string, like all port strings, is defined by the transport implementation and
is independent of the IDL specification. The MIDL compiler performs limited syntax checking but does not
guarantee that the endpoint specification is correct. Some classes of errors may be reported at run time
rather than compile time.

See Also
endpoint, IDL, ncacn_ip_tcp, ncacn_nb_tcp, ncacn_nb_nb, ncacn_at_dsp, ncacn_spx, ncacn_np,
ncalrpc, ncadg_ip_udp, ncadg_ipx, string_binding

ncacn_nb_nb
endpoint("ncacn_nb_nb:[port-name]")

port-name

Specifies an optional 8-bit value ranging from zero to 255. Values of less than 0x20 are reserved. If
the port-name value is not specified, the endpoint-mapping service selects the port value.

Example
[uuid(12345678-4000-2006-0000-20000000001a),
 version(1.1),
 endpoint("ncacn_nb_nb:[100]")
]

Remarks

The ncacn_nb_nb keyword identifies NetBEUI over NetBIOS as the protocol family for the endpoint.

The syntax of the NetBIOS port string, like all port strings, is defined by the transport implementation and
is independent of the IDL specification. The MIDL compiler performs limited syntax checking but does not
guarantee that the endpoint specification is correct. Some classes of errors may be reported at run time
rather than during compilation.

See Also
endpoint, IDL, ncacn_ip_tcp, ncacn_nb_tcp, ncacn_np, ncacn_spx, ncalrpc, string_binding

ncacn_nb_tcp
endpoint("ncacn_nb_tcp:[port-name]")

port-name

Specifies an optional 8-bit value ranging from zero to 255. Values of less than 0x20 are reserved. If
the port-name value is not specified, the endpoint-mapping service selects the port value.

Example
[uuid(12345678-4000-2006-0000-20000000001a),
 version(1.1),
 endpoint("ncacn_nb_tcp:[100]")
]

Remarks

The ncacn_nb_tcp keyword is used to identify TCP over NetBIOS as the protocol family for the endpoint.

The syntax of the NetBIOS port string, like all port strings, is defined by the transport implementation and
is independent of the IDL specification. The MIDL compiler performs limited syntax checking but does not
guarantee that the endpoint specification is correct. Some classes of errors may be reported at run time
rather than compile time.

See Also
endpoint, IDL, ncacn_ip_tcp, ncacn_nb_nb, ncacn_np, ncacn_spx, ncalrpc, string_binding

ncacn_np
endpoint("ncacn_np:server-name[\\pipe\\pipe-name]")

server-name

Optional. Specifies the name of the server. Backslash characters are optional.
pipe-name

Specifies a valid pipe name. A valid pipe name is a string containing identifiers separated by
backslash characters. The first identifier must be pipe. Each identifier must be separated by two
backslash characters.

Examples
[uuid(12345678-4000-2006-0000-20000000001a),
 version(1.1),
 endpoint("ncacn_np:[\\pipe\\stove\\hat]")
]
[uuid(12345678-4000-2006-0000-20000000001b),
 version(1.1),
 endpoint("ncacn_np:\\\\myotherserver[\\pipe\\corncob]")
]

Remarks

The ncacn_np keyword identifies named-pipes as the protocol family for the endpoint.

Note For Windows 95 platforms, ncacn_np is supported only for client applications.

The syntax of the named-pipe port string, like all port strings, is defined by the transport implementation
and is independent of the IDL specification. The MIDL compiler performs limited syntax checking but does
not guarantee that the endpoint specification is correct. Some classes of errors may be reported at run
time rather than during compilation.

See Also
endpoint, IDL, ncacn_at_dsp, ncacn_dnet_nsp, ncacn_ip_tcp, ncacn_nb_ipx, ncacn_spx,
ncacn_nb_nb, ncacn_nb_tcp, ncacn_vns_spp ncalrpc, ncadg_ipx, ncadg_ip_udp, string_binding

ncacn_spx
endpoint("ncacn_spx:link-address[port-name]")

link-address

Specifies the host server. This may be either a character string (the server name), or a 20 digit
hexadecimal number that consists of the host server's network address (8 digits)concatenated with
the node address (12 digits). See Remarks for instructions on how to obtain the network address and
node address. A null string specifies the local computer.

port-name

Specifies an optional 16-bit number that represents the socket address. Values can range from 1 to
65,535. When no value is specified, the endpoint-mapping service selects a valid port-name value.

Example
[uuid(12345678-4000-2006-0000-20000000001a),
 version(1.1),
 endpoint("ncacn_spx:[1000]")
] interface foo

Remarks

The ncacn_spx keyword identifies SPX as the protocol family for the endpoint.

The syntax of the SPX transport port string, like all port strings, is defined independently of the IDL
specification. The compiler performs some syntax checking but does not guarantee that the endpoint
specification is correct. Some errors may be reported at run time rather than during compilation.

When using the ncacn_spx transport, the server name is exactly the same as the 32-bit Windows NT
name. However, since the names are distributed using Novell protocols, they must conform to the Novell
naming conventions. If a server name is not a valid Novell name, servers will not be able to create
endpoints with the ncacn_spx transport. The following is a partial list of characters prohibited in Novell
server names:

" * + . / : ; < = > ? [] \ |

The ncacn_spx transport is not supported by the version of NWLink supplied with MS Client 3.0.

16-bit Windows client applications that use the ncacn_spx transport require that the file NWIPXSPX.DLL
be installed in order to run under the Windows NT Windows on Windows (WOW) subsystem. Contact
Novell to obtain this file.

Note To obtain the network and node addresses, use Novell's comcheck utility, or the Novell-
defined API IPXGetInternetAddress. On Windows NT, you can also obtain these addresses with the
ipxroute configTo obtain the network and node addresses, use Novell's comcheck utility, or the
Novell-defined API IPXGetInternetAddress. On Windows NT, you can also obtain these addresses
with the ipxroute config command.

See Also
endpoint, IDL, ncacn_at_dsp, ncacn_dnet_nsp, ncacn_ip_tcp, ncacn_nb_ipx, ncacn_nb_nb,
ncacn_nb_tcp, ncacn_np, ncacn_vns_spp, ncalrpc, ncadg_ipx, ncadg_ip_udp, string_binding

ncacn_vns_spp
endpoint("ncacn_vns_spp:server-name[port-address]")

server-name

Specifies the StreetTalk name of the server. The name is of the form item@group@organization. The
item can be up to 31 characters long and the group and organization can be up to 15 characters.

port-name

Specifies a Banyan Vines SPP port. The valid range for static endpoints is 250 - 511.

Example
[uuid(...),
 version(1.1),
 endpoint("ncacn_vns_spp:printer@sdkgrp@company[260]")

Remarks

The ncacn_vns_spp keyword identifies Banyan Vines SPP as the protocol family for the endpoint.

The syntax of the Banyan Vines SPP transport port string, like all port strings, is defined independently of
the IDL specification. The compiler performs some syntax checking but does not guarantee that the
endpoint specification is correct. Some errors may be reported at run time.

In order to use the ncacn_vns_spp transport protocol in distributed applications running on Windows NT,
Banyan's Enterprise Client for Windows NT must be installed. After installation, open the Control Panel,
choose Configuration and Add, then select "Service | Banyan | RPC services for Banyan". Support for 16-
bit clients (MS-DOS and Windows 3.x) requires appropriate Vines software.

For more information on Enterprise Client for Windows NT and 16-bit Vines software, contact
http://WWW.BANYAN.COM or call:

In USA 1-800-2-BANYAN

In Canada (905)-855-2971

In Europe 31-3465-75080

In Asia Pacific (852) 2821-9700

See Also
endpoint, IDL, ncacn_at_dsp, ncacn_dnet_nsp, ncacn_ip_tcp, ncacn_nb_ipx, ncacn_spx,
ncacn_nb_nb, ncacn_nb_tcp, ncacn_np, ncalrpc, ncadg_ipx, ncadg_ip_udp,string_binding

ncadg_ip_udp
endpoint("ncadg_ip_udp:server-name[port-name]")

server-name

Specifies the name or internet address for the server, or host, computer. The name is a character
string and may be a fully-qualified domain name. The internet address is a common internet address
notation.

port-name

Specifies an optional 16-bit number. Values of less than 1024 are usually reserved. If no value is
specified, the endpoint-mapping service selects a valid port-name value.

Example
[uuid(12345678-4000-2006-0000-20000000001a),
 version(1.1),
 endpoint("ncadg_ip_udp:rainier[1404]")
] interface foo

endpoint("ncadg_ip_udp:128.10.2.30[1404]")

Remarks

The ncadg_ip_udp keyword identifies the datagram version of TCP/IP as the protocol family for the
endpoint.

The following restrictions apply to the datagram protocols, ncadg_ipx and ncadg_ip_udp:

· They do not support callbacks. Any functions using the callback attribute will fail.
· They do not support use of the pipe type constructor.

The syntax of the TCP/IP transport port string, like all port strings, is defined independently of the IDL
specification. The compiler performs some syntax checking but does not guarantee that the endpoint
specification is correct. Some errors may be reported at run time rather than during compilation.

See Also
endpoint, IDL, ncacn_at_dsp, ncacn_dnet_nsp, ncacn_ip_tcp, ncacn_nb_ipx, ncacn_spx,
ncacn_nb_nb, ncacn_nb_tcp, ncacn_np, ncacn_vns_spp, ncalrpc, ncadg_ipx, string_binding

ncadg_ipx
endpoint("ncadg_ipx:link-address[port-name]")

link-address

Specifies the host server. This may be either a character string (the server name), or a 20 digit
hexadecimal number that consists of the host server's network address (8 digits)concatenated with
the node address (12 digits). See Remarks for instructions on how to obtain the network address and
node address. A null string specifies the local computer.

port-name

Specifies an optional 16-bit number that represents the socket address. Values can range from 1 to
65535. When no value is specified, the endpoint-mapping service selects a valid port-name value.

Example
[uuid(12345678-4000-2006-0000-20000000001a),
 version(1.1),
 endpoint("ncadg_ipx:[1000]")
] interface foo

Remarks

The ncadg_ipx keyword identifies IPX as the protocol family for the endpoint.

The following restrictions apply to the datagram protocols, ncadg_ipx and ncadg_ip_udp:

· They do not support callbacks. Any functions using the callback attribute will fail.
· They do not support use of the pipe type constructor.

The syntax of the TCP/IP transport port string, like all port strings, is defined independently of the IDL
specification. The compiler performs some syntax checking but does not guarantee that the endpoint
specification is correct. Some errors may be reported at run time rather than during compilation.

When using the ncadg_ipx transport, the server name is exactly the same as the 32-bit Windows server
name. However, since the names are distributed using Novell protocols, they must conform to the Novell
naming conventions. If a server name is not a valid Novell name, servers will not be able to create
endpoints with the ncadg_ipx transport. The following is a partial list of characters prohibited in Novell
server names:

" * + . / : ; < = > ? [] \ |

The ncadg_ipx transport is supported by the version of NWLink supplied with MS Client 3.0.

16-bit Windows client applications that use the ncadg_ipx transport require that the file NWIPXSPX.DLL
be installed in order to run under the Windows NT Windows on Windows (WOW) subsystem. Contact
Novell to obtain this file.

To obtain the network and node addresses, use Novell's comcheck utility, or the Novell-defined API
IPXGetInternetAddress. On Windows NT, you can also obtain these addresses with the ipxroute config
command.

See Also
endpoint, IDL, ncacn_at_dsp, ncacn_dnet_nsp, ncacn_ip_tcp, ncacn_nb_ipx, ncacn_spx,

ncacn_nb_nb, ncacn_nb_tcp, ncacn_np, ncacn_vns_spp, ncalrpc, ncadg_ip_udp, string_binding

ncalrpc
endpoint("ncalrpc:[port-name]")

port-name

A character string that specifies the communication port (an application, a service, or an instance of a
service) that a client uses to make interprocess calls to a server. The string can contain up to 250
characters and should not contain any backslash (\) characters. The computer name must not be
used with the ncalrpc keyword.

Example
[uuid(12345678-4000-2006-0000-20000000001a),
 version(1.1),
 endpoint("ncalrpc:[myapplicationname]")
]

Remarks

The ncalrpc keyword identifies local interprocess communication as the protocol family for the endpoint.
This keyword is one of the valid protocol family names that must be used with the endpoint attribute.

The syntax of the local interprocess-communication port string, like all port strings, is defined by the
transport implementation and is independent of the IDL specification. The MIDL compiler performs limited
syntax checking but does not guarantee that the endpoint specification is correct. Some classes of errors
may be reported at run time rather than during compilation.

See Also
endpoint, IDL, ncacn_at_dsp, ncacn_dnet_nsp, ncacn_ip_tcp, ncacn_nb_ipx, ncacn_spx,
ncacn_nb_nb, ncacn_nb_tcp, ncacn_np, ncacn_vns_spp, ncadg_ip_udp, ncadg_ipx,
string_binding

nocode
[nocode [, ACF-interface-attributes]] interface interface-name

{
[include filename-list ;] ...
[typedef [type-attribute-list] typename;] ...

[[nocode [, ACF-function-attributes]] function-name (
[ACF-parameter-attributes] parameter-name ;
...
);

]
...

}

ACF-interface-attributes

Specifies a list of one or more attributes that apply to the interface as a whole. Valid attributes include
either auto_handle or implicit_handle and either code or nocode. When two or more interface
attributes are present, they must be separated by commas.

interface-name

Specifies the name of the interface. In DCE-compatibility mode, the interface name must match the
name of the interface specified in the IDL file. When you use the MIDL compiler switch /acf, the
interface name in the ACF and the interface name in the IDL file can be different.

filename-list

Specifies a list of one or more C-language header filenames, separated by commas. The full
filename, including the extension, must be supplied.

type-attribute-list

Specifies a list of one or more attributes, separated by commas, that apply to the specified type. Valid
type attributes include allocate.

typename

Specifies a type defined in the IDL file. Type attributes in the ACF can only be applied to types
previously defined in the IDL file.

ACF-function-attributes

Specifies attributes that apply to the function as a whole, such as comm_status. Function attributes
are enclosed in square brackets. Separate multiple function attributes with commas.

function-name

Specifies the name of the function as defined in the IDL file.
ACF-parameter-attributes

Specifies ACF attributes that apply to a parameter. Note that zero or more attributes can be applied to
the parameter. Separate multiple parameter attributes with commas. ACF parameter attributes are
enclosed in square brackets.

parameter-name

Specifies a parameter of the function as defined in the IDL file. Each parameter for the function must
be specified in the same sequence and using the same name as defined in the IDL file.

Remarks
The nocode attribute can appear in the ACF header, or it can be applied to an individual function.

When the nocode attribute appears in the ACF header, client stub code is not generated for any remote
function unless it has the code function attribute. You can override the nocode attribute in the header for
an individual function by specifying the code attribute as a function attribute.

When the nocode attribute appears in the function's attribute list, no client stub code is generated for the
function.

Client stub code is not generated when:

· The ACF header includes the nocode attribute.
· The nocode attribute is applied to the function.
· The local attribute applies to the function in the interface file.

Either code or nocode can appear in a function's attribute list, and the one you choose can appear
exactly once.

The nocode attribute is ignored when server stubs are generated. You cannot apply it when generating
server stubs in DCE-compatibility mode.

See Also
ACF, code

non-encapsulated_union
typedef [switch_type(switch-type-specifier) [, type-attr-list]] union [tag] {

[case (limited-expr-list)]
[[field-attribute-list]] type-specifier declarator-list ;

[[default]
[[field-attribute-list]] type-specifier declarator-list ;

]
}

switch-type-specifier

Specifies an integer, character, or enum type or an identifier of such a type.
type-attr-list

Specifies zero or more attributes that apply to the union type. Valid type attributes include handle,
transmit_as; the pointer attribute unique, or ptr; and the usage attributes context_handle and
ignore. Separate multiple attributes with commas.

tag

Specifies an optional tag.
limited-expr-list

Specifies one or more C-language expressions that are supported by MIDL. Almost all C expressions
are supported. The MIDL compiler supports conditional expressions, logical expressions, relational
expressions, and arithmetic expressions. MIDL does not allow function invocations in expressions
and does not allow pre- and post-increment and -decrement operators.

field-attribute-list

Specifies zero or more field attributes that apply to the union member. Valid field attributes include
first_is, last_is, length_is, max_is, size_is; the usage attributes string, ignore, and
context_handle; the pointer attribute ref, unique, or ptr; and, for members that are themselves
unions, the union attribute switch_type. Separate multiple field attributes with commas.

type-specifier

Specifies a base_type, struct, union, enum type, or type identifier. An optional storage specification
can precede type-specifier.

declarator-list

Specifies one or more standard C declarators, such as identifiers, pointer declarators, and array
declarators. (Function declarators and bit-field declarations are not allowed in unions that are
transmitted in remote procedure calls. These declarators are allowed in unions that are not
transmitted.) Separate multiple declarators with commas.

Remarks
The nonencapsulated union is indicated by the presence of the type attribute switch_type and the field
attribute switch_is.

The shape of unions must be the same across platforms to ensure interconnectivity.

For more information, see switch_is and switch_type.

See Also
field_attributes, IDL, union

nonextensible
[uuid, nonextensible [, optional-attribute-list] interface | dispinterface interface-name {interface-

definitions}

Example
library Hello
{
[uuid(. . .), helpstring("A helpful description."),
 oleautomation, dual, nonextensible] interface IHello : IDispatch
 {. . .};

Remarks

By default, OLE Automation assumes that interfaces may add members at run time; that is, it assumes
they are extensible. The nonextensible attribute specifies that the IDispatch implementation includes
only the properties and methods listed in the interface description and cannot be extended with additional
members at run time.

You can apply the nonextensible attribute to either an interface or a dispinterface. However, an interface
must also have the dual and oleautomation attributes.

Flags
TYPEFLAG_FNONEXTENSIBLE

See Also
TYPEFLAGS, interface, dispinterface, Generating a Type Library With MIDL, Contents of a Type
Library, ODL File Syntax, TYPEFLAGS

non-idempotent
Non-idempotent (at most once) indicates that the remote procedure call cannot be executed more than
once because it will return a different value or change a state. Non-idempotent is the default for remote
procedure calls.

All non-idempotent calls are executed by the server "at most once"; that is, not at all or exactly once.
The protocol used to enforce this is the callback function. Non-idempotent requests require the server to
perform a callback when it receives a request from a client about which it has no information. The server
makes the callback request by issuing a remote procedure call to the client. When it receives the
callback, the server's boot time and the client's sequence number are used as the basis of comparison to
validate the request. If a match is made, the server executes the original request. Otherwise, the request
is ignored.

A non-idempotent call ensures that the data is received and processed at most one time.

See Also
broadcast, callback, idempotent, IDL, maybe

notify
[notify] ... ;

Example
[notify] ProcedureFoo;

Remarks

The notify attribute instructs the MIDL compiler to generate a server stub that contains a call to a
specially-named procedure on the server side of the application. This procedure is called the notify
procedure. It is called after all the output arguments have been marshalled and any memory associated
with the parameters is freed.

The notify attribute is useful to develop applications acquiring resources in the server manager routine.
These resources are then freed in the notify procedure after the output parameters are fully marshalled.

The notify procedure name is the name of the remote procedure suffixed by _notify. The notify
procedure does not require any parameters and does not return a result. A prototype of this procedure is
also generated in the header file. For example, if the IDL file contains the following:

ProcedureFoo [in] short S);

Specify the following in the ACF for MIDL to generate the notify call:

[notify] ProcedureFoo();

The generated code will contain the following call to the notify procedure:

ProcedureFoo_notify();

The header file will contain a prototype:

void ProcedureFoo_notif(void);

See Also

ACF

object
[object, uuid(string-uuid)[, interface-attribute-list]]

 interface interface-name : base-interface

string-uuid

Specifies a UUID string generated by the uuidgen utility. You can enclose the UUID string in quotes,
except when you use the MIDL compiler switch /osf.

interface-attribute-list

Specifies other attributes that apply to the interface as a whole.
interface-name

Specifies the name of the interface.
base-interface

Specifies the name of an OLE interface from which this derived interface inherits member functions,
status codes, and interface attributes. All OLE interfaces are derived from the IUnknown interface or
another OLE interface.

Remarks
The object interface attribute identifies a custom OLE interface. An interface attribute list that does not
include the object attribute indicates a DCE RPC interface. An interface attribute list for an OLE interface
must include the uuid attribute, but it cannot include the version attribute.

By default, compiling an OLE interface with the MIDL compiler generates the files needed to build a proxy
DLL. This DLL contains the code to support the use of the custom OLE interface by both client
applications and object servers. However, if the interface attribute list for an OLE interface specifies the
local attribute, the MIDL compiler generates only the interface header file.

The MIDL compiler automatically generates an interface data type for an OLE interface. As an alternative,
you can use typedef with the interface keyword to explicitly define an interface data type. The interface
specification can then use the interface data type in function parameters and return values, struct and
union members, and other type declarations. The following example illustrates the use of an
automatically generated IStream data type:

[object, uuid (ABCDEFOO-1234-1234-5678-ABCDEF123456)]
 interface IStream : IUnknown{
 typedef IStream * LPSTREAM;
}

In an OLE interface, all the interface member functions are assumed to be virtual functions. A virtual
function has an implicit this pointer as the first parameter. The virtual function table contains an entry for
each interface member function.

Non-[local] object interface member functions must have a return value of HRESULT or SCODE. (Note
that earlier versions of MIDL allowed member functions to return void. However, beginning with MIDL
version 3.0, returning void generates a compiler error.) Having a return value of HRESULT or SCODE
means that if an exception is generated during a remote call, the generated proxies catch the exception
and return the exception code in the return value. If your application can afford to ignore errors that occur
during a remote procedure call, you can specify HRESULT as the return type without checking the return
value after the call.

If you are recompiling an old application, changing the return types can introduce backward compatibility

problems when the server sends the newly introduced result to the client. As an alternative to changing
the return type, you can label the function that returns void with the [call_as] attribute, thus making it a
local function. Then define a related remote function with the same parameters but with the return type of
HRESULT. The local function can raise an exception based on that HRESULT value, if necessary.

The object attribute is not available when you compile using the MIDL compiler /osf switch.

See Also
IDL, iid_is, local, /osf, uuid, version

odl
Remarks

MKTYPLIB required this attribute on ODL interfaces. The MIDL compiler does not require the odl
attribute; it is recognized only for compatibility with older ODL files.

oleautomation
[oleautomation, uuid(string-uuid)[, interface-attribute-list]]

 interface interface-name : base-interface

string-uuid

Specifies a UUID string generated by the uuidgen utility.
interface-attribute-list

Specifies other attributes that apply to the interface as a whole.
interface-name

Specifies the name of the interface.
base-interface

Specifies the name of an OLE Automation interface from which this derived interface inherits member
functions, status codes, and interface attributes. All OLE Automation interfaces are derived from
IUnknown or IDispatch.

Example
library Hello
{
 importlib("stdole32.tlb");
 [
 uuid(. . .),
 helpstring("Application object for the Hello application."),
 oleautomation,
 dual
]
 interface IHello : IDispatch
 {. . .}

Remarks

The oleautomation attribute indicates that an interface is compatible with OLE Automation. The
parameters and return types specified for its members must be OLE Automation-compatible, as listed in
the following table.

Type Description
boolean Data item that can have the value TRUE or

FALSE. In MIDL, the size corresponds to
unsigned char.

unsigned char 8-bit unsigned data item.
double 64-bit IEEE floating-point number.
float 32-bit IEEE floating-point number.
int Integer whose size is system dependent. On

32-bit platforms, MIDL treats int as a 32-bit
signed integer.

long 32-bit signed integer.
short 16-bit signed integer.
BSTR Length-prefixed string, as described in the OLE

Automation topic BSTR.
CY (Formerly CURRENCY) 8-byte fixed-point

number.
DATE 64-bit floating-point fractional number of days

since December 30, 1899.
SCODE Built-in error type that corresponds to

VT_ERROR.
enum Signed integer, whose size is system-

dependent. In remote operations, enum
objects are treated as 16-bit unsigned entities.
Applying the v1_enum attribute to an enum
type definition allows enum objects to be
transmitted as 32-bit entities.

IDispatch * Pointer to IDispatch interface
(VT_DISPATCH).

IUnknown * Pointer to interface that is not derived from
IDispatch (VT_UNKNOWN). (Any OLE
interface can be represented by its IUnknown
interface.)

A parameter is compatible with OLE Automation if its type is an OLE Automation-compatible type, a
pointer to an OLE Automation-compatible type, or a SAFEARRAY of an OLE Automation-compatible type.

A return type is compatible with OLE Automation if its type is an HRESULT, SCODE or void. However,
MIDL requires that interface methods return either HRESULT or SCODE. Returning void generates a
compiler error.

A member is compatible with OLE Automation if its return type and all its parameters are OLE-Automation
compatible.

An interface is compatible with OLE Automation if it is derived from IDispatch or IUnknown, it has the
oleautomation attribute, and all of its VTBL entries are OLE-Automation compatible. For 32-bit platforms,
the calling convention for all methods in the interface must be STDCALL. For 16-bit systems, all methods
must have the CDECL calling convention.

Every dispinterface is implicitly OLE Automation-compatible. Therefore you should not use the
oleautomation attribute on dispinterfaces.

The oleautomation attribute is not available when you compile using the MIDL compiler /osf switch.

Flags
TYPEFLAG_FOLEAUTOMATION

See Also
ODL File Syntax, ODL File Example, Generating a Type Library With MIDL, Differences Between MIDL
and MKTYPLIB, IDL, uuid

optimize
optimize ("optimization-options")

optimization-options

Specifies the method of marshalling data. Use either "s" for mixed-mode marshalling or "i" for
interpreted marshalling.

Examples
optimize ("s") void FasterProcedure(...);
optimize ("i") void SmallerProcedure(...);
{
};

Remarks

The keyword optimize is used to fine-tune the level of gradation for marshalling data.

This version of RPC provides two methods for marshalling data: mixed-mode ("s") and interpreted ("i").
These methods correspond to the /Os and /Oi command-line switches. The interpreted method marshals
data completely offline. While this can reduce the size of the stub considerably, performance can be
affected.

If performance is a concern, the mixed-mode method can be the best approach. Mixed-mode allows the
MIDL compiler to make the determination between which data will be marshalled inline and which will be
marshalled by a call to an offline dynamic-link library. If many procedures use the same data types, a
single procedure can be called repeatedly to marshal the data. In this way, data that is most suited to
inline marshalling is processed inline while other data can be more efficiently marshalled offline.

Note that the optimize attribute can be used as an interface attribute or as an operation attribute. If it is
used as an interface attribute, it sets the default for the entire interface, overriding command-line
switches. If, however, it is used as an operation attribute, it affects only that operation, overriding
command-line switches and the interface default.

See Also
ACF, /Oi, /Os

optional
return-type func-name([optional [, other-attributes]] param-type param-name)

Example
HRESULT MyFunc([in, optional] VARIANT Param1,
 [out, optional] VARIANT Param2)

Remarks

The optional attribute specifies an optional parameter for a member function. This attribute is valid only if
the parameter is of type VARIANT or VARIANT*.

The MIDL compiler accepts the following parameter ordering (from left-to-right):

1. Required parameters (parameters that do not have the defaultvalue or optional attributes),
2. optional parameters with or without the defaultvalue attribute,
3. parameters with the optional attribute and without the defaultvalue attribute,
4. lcid parameter, if any,
5. retval parameter

You cannot apply the optional attribute to a parameter that also has the lcid or retval attributes.

See Also
ODL File Syntax, ODL File Example, Generating a Type Library With MIDL, Differences Between MIDL
and MKTYPLIB

out
[[function-attribute-list]] type-specifier [pointer-declarator] function-name(

[out [, parameter-attribute-list]] type-specifier [declarator]
, ...

);

function-attribute-list

Specifies zero or more attributes that apply to the function. Valid function attributes are callback,
local; the pointer attribute ref, unique, or ptr; and the usage attributes string, ignore, and
context_handle.

type-specifier

Specifies a base_type, struct, union, or enum type or type identifier. An optional storage
specification can precede type-specifier.

pointer-declarator

Specifies zero or more pointer declarators. A pointer declarator is the same as the pointer declarator
used in C; it is constructed from the * designator, modifiers such as far, and the qualifier const.

function-name

Specifies the name of the remote procedure.
parameter-attribute-list

Specifies zero or more attributes appropriate for a specified parameter type. Parameter attributes with
the out attribute can also take the directional attribute out; the field attributes first_is, last_is,
length_is, max_is, size_is, and switch_type; the pointer attribute ref, unique, or ptr; and the usage
attributes context_handle and string. The usage attribute ignore cannot be used as a parameter
attribute. Separate multiple attributes with commas.

declarator

Specifies standard C declarators, such as identifiers, pointer declarators, and array declarators. For
more information, see pointers and arrays. The parameter declarator in the function declarator, such
as the parameter name, is optional.

Example
void MyFunction([out] short * pcount);

Remarks

The out attribute identifies pointer parameters that are returned from the called procedure to the calling
procedure (from the server to the client).

The out attribute indicates that a parameter that acts as a pointer and its associated data in memory are
to be passed back from the called procedure to the calling procedure.

The out attribute must be a pointer. DCE IDL compilers require the presence of an explicit * as a pointer
declarator in the parameter declaration. Microsoft IDL offers an extension that drops this requirement and
allows an array or a previously defined pointer type.

A related attribute, in, indicates that the parameter is passed from the calling procedure to the called
procedure. The in and out attributes specify the direction in which the parameters are passed. A
parameter can be defined as in-only, out-only, or in, out.

An out-only parameter is assumed to be undefined when the remote procedure is called and memory for
the object is allocated by the server. Since top-level pointer/parameters must always point to valid
storage, and therefore cannot be null, out cannot be applied to top-level unique or ptr pointers.
Parameters that are ref pointers must be either in or in, out parameters.

See Also
in, ref

out_of_line
The DCE IDL keyword out_of_line is not supported in Microsoft RPC.

See Also
IDL

pipe
typedef pipe element-type pipe-declarator;

element-type

Defines the size of a single element in the transfer buffer. The element-type can be a base_type,
predefined_type, struct, enum, or type identifier. Several restrictions apply to element-types, as
described in Remarks, below.

pipe-declarator

Specifies one or more identifiers or pointers to identifiers. Separate multiple declarators with commas.

Examples
typedef pipe unsigned char UCHAR_PIPE1, UCHAR_PIPE2;

//SIMPLE_STRUCT defined elsewhere
typedef pipe SIMPLE_STRUCT SIMPLE_STRUCT_PIPE;

Remarks

The pipe type constructor makes it possible to transmit an open-ended stream of typed data across a
remote procedure call. An in pipe parameter allows the server to pull the data stream from the client
during a remote procedure call. An out pipe parameter allows the server to push the data stream back to
the client. You supply the client-side routines to push and pull the data stream and to allocate a global
buffer for the data. The client and server stub routines marshal and unmarshal data and pass a reference
to the buffer back to the application.

The following restrictions apply to pipes:

· A pipe element cannot be or contain a pointer, a conformant or varying array, a handle, or a context
handle. In this (MIDL 3.0) implementation of pipes, a pipe element cannot be or contain a union.

· You cannot apply the transmit_as, represent_as, wire_marshal, or user_marshal attributes to a
pipe type or to the element-type.

· A pipe type cannot be a member of a structure or union, the target of a pointer, or the base type of an
array.

· A data type declared to be a pipe type can only be used as a parameter of a remote call.
· You can pass a pipe parameter in either direction by value or by reference (ref pointer). However you

cannot apply the ptr attribute to a pipe that is passed by reference. You cannot specify a pipe
parameter with a unique or a full pointer, regardless of direction.

· You cannot use pipes in object interfaces.
· You cannot apply the idempotent attribute to a routine that has a pipe parameter.
· You cannot use the serialization attributes, encode and decode with pipes.
· You cannot use automatic handles, either by default, or with the auto_handle attribute, with pipes.

Note The MIDL 3.0 compiler supports pipes in / Oi2 mode only.

For more information on implementing routines with pipe parameters, see Pipes in the RPC
Programmer's Guide and Reference.

pointer_default
pointer_default (ptr | ref | unique)

Example
[uuid(6B29FC40-CA47-1067-B31D-00DD010662DA),
version(3.3),
pointer_default(unique)]
interface dictionary

Remarks

The pointer_default attribute specifies the default pointer attribute for all pointers except top-level
pointers that appear in parameter lists. This includes embedded pointers ¾ pointers that appear in
structures, unions, and arrays. The pointer_default attribute can also apply to pointers returned by
functions.

MIDL generates an error during compilation when you do not supply a pointer attribute in an interface that
includes embedded pointers.

The default does not apply to pointers that appear as top-level parameters, such as individual pointers
used as function parameters. A pointer attribute must be supplied for these pointers. The default is
always overridden when a pointer attribute is supplied. If all pointers are supplied with pointer attributes,
the default attribute is ignored.

The pointer_default attribute is an optional attribute in the IDL file. The pointer_default attribute is
required only in the interface header when:

· A parameter with more than one asterisk (*) appears in a function.
· A structure member or union arm with a pointer declarator does not have a pointer attribute.
· A function returns a pointer type and does not have a pointer attribute as a function attribute.

If the pointer_default attribute appears in the interface header and is not required, it is ignored.

See Also
interface, pointers, ptr, ref, unique

pointers
MIDL supports three kinds of pointers: reference pointers, unique pointers, and full pointers. These
pointers are specified by the pointer attributes ref, unique, and ptr.

A pointer attribute can be applied as a type attribute; as a field attribute that applies to a structure
member, union member, or parameter; or as a function attribute that applies to the function return type.
The pointer attribute can also appear with the pointer_default keyword.

To allow a pointer parameter to change in value during a remote function, you must provide another level
of indirection by supplying multiple pointer declarators. The explicit pointer attribute applied to the
parameter affects only the rightmost pointer declarator for the parameter. When there are multiple pointer
declarators in a parameter declaration, the other declarators default to the pointer attribute specified by
the pointer_default attribute. To apply different pointer attributes to multiple pointer declarators, you must
define intermediate types that specify the explicit pointer attributes.

Default Pointer-Attribute Values
When no pointer attribute is associated with a pointer that is a parameter, the pointer is assumed to be a
ref pointer.

When no pointer attribute is associated with a pointer that is a member of a structure or union, the MIDL
compiler assigns pointer attributes using the following priority rules (1 is highest):

1. Attributes explicitly applied to the pointer type
2. Attributes explicitly applied to the pointer parameter or member
3. Pointer_default attribute in the IDL file that defines the type
4. Pointer_default attribute in the IDL file that imports the type
5. Ptr (osf mode); unique (Microsoft RPC default mode)

When the IDL file is compiled in default mode, imported files can inherit pointer attributes from importing
files. This feature is not available when you compile using the /osf switch. For more information, see
import.

Function Return Types
A pointer returned by a function must be a unique pointer or a full pointer. The MIDL compiler reports an
error if a function result is a reference pointer, either explicitly or by default. The returned pointer always
indicates new storage.

Functions that return a pointer value can specify a pointer attribute as a function attribute. If a pointer
attribute is not present, the function-result pointer uses the value provided as the pointer_default
attribute.

Pointer Attributes in Type Definitions
When you specify a pointer attribute at the top level of a typedef statement, the specified attribute is
applied to the pointer declarator, as expected. When no pointer attribute is specified, pointer declarators
at the top level of a typedef statement inherits the pointer attribute type when used.

DCE IDL does not allow the same pointer attribute to be explicitly applied twice ¾ for example, in both the
typedef declaration and the parameter attribute list. When you use the default (Microsoft-extensions)
mode of the MIDL compiler, this constraint is relaxed.

See Also
allocate, IDL, import, /osf, pointer_default, ptr, ref, unique

pragma
#pragma midl_echo("string")

#pragma token-sequence
#pragma pack (n)
#pragma pack ([push] [, id] [, n})
#pragma pack ([pop] [, id] [, n})

string

Specifies a string that is inserted into the generated header file. The quotation marks are removed
during the insertion process.

token-sequence

Specifies a sequence of tokens that are inserted into the generated header file as part of a #pragma
directive without processing by the MIDL compiler.

n

Specifies the current pack size. Valid values are 1, 2, 4, 8, and 16.
id

Specifies the user id.

Examples
/* IDL file */
#pragma midl_echo("#define UNICODE")
cpp_quote("#define __DELAYED_PREPROCESSING__ 1")
#pragma hdrstop
#pragma check_pointer(on)

/* generated header file */
#define UNICODE
#define __DELAYED_PREPROCESSING__ 1
#pragma hdrstop
#pragma check_pointer(on)

Remarks

The #pragma midl_echo directive instructs MIDL to emit the specified string, without the quote
characters, into the generated header file.

C-language preprocessing directives that appear in the IDL file are processed by the C compiler's
preprocessor. The #define directives in the IDL file are available during MIDL compilation, although not to
the C compiler.

For example, when the preprocessor encounters the directive "#define WINDOWS 4", the preprocessor
replaces all occurrences of "WINDOWS" in the IDL file with "4". The symbol "WINDOWS" is not available
at C-compile time.

To allow the C-preprocessor macro definitions to pass through the MIDL compiler to the C compiler, use
the #pragma midl_echo or cpp_quote directive. These directives instruct the MIDL compiler to generate
a header file that contains the parameter string with the quotation marks removed. The #pragma
midl_echo and cpp_quote directives are equivalent.

The #pragma pack directive is used by the MIDL compiler to control the packing of structures. It

overrides the /Zp command-line switch. The pack (n) option sets the current pack size to a specific value:
1, 2, 4, 8, or 16. The pack (push) and pack (pop) options have the following characteristics:

· The compiler maintains a packing stack. The elements of the packing stack include a pack size and
an optional id. The stack is limited only by available memory with the current pack size at the top of
the stack.

· Pack (push) results in the current pack size pushed onto the packing stack. The stack is limited by
available memory.

· Pack (push, n) is the same as pack (push) followed by pack (n).
· Pack (push, id) also pushes id onto the packing stack along with the pack size.
· Pack (push, id, n) is the same as pack (push, id) followed by pack (n).
· Pack (pop) results in popping the packing stack. Unbalanced pops cause warnings and set the

current pack size to the command-line value.
· If pack (pop, id, n) is specified, then n is ignored.

The MIDL compiler places the strings specified in the cpp_quote and pragma directives in the header file
in the sequence in which they are specified in the IDL file and relative to other interface components in
the IDL file. The strings should usually appear in the interface-body section of the IDL file after all import
operations.

The MIDL compiler does not attempt to process #pragma directives that do not start with the prefix
"midl_." Other #pragma directives in the IDL file are passed into the generated header file without
changes.

See Also
cpp_quote, IDL, /Zp

propget
[propget [,optional-property-attributes]] return-type func-name(parameters);

Example
 interface InMyFace : IDispatch
 {
 [propget, helpstring("A meaningful comment.")]
 HRESULT Method1([out, retval] int* retval);
 [propput, helpstring("Another meaningful comment.")]
 HRESULT Method1([in] int Value);

 [propget, helpstring("A meaningful comment."), id(1)]
 HRESULT Method2([out, retval] InYourFace** retval);
 [propputref, helpstring("Another meaningful comment."), id(1)]
 HRESULT Method2([in] InYourFace* Point);
 }

Remarks

The propget attribute specifies a property accessor function. The property must have the same name as
the function.

A function that has the propget attribute must also have, as its last parameter, a pointer type with the out
and retval attributes.

At most, one of propget, propput, and propputref can be specified for a function.

Flags
INVOKE_PROPERTYGET

See Also
TYPEFLAGS, ODL File Syntax, ODL File Example, Generating a Type Library With MIDL, Differences
Between MIDL and MKTYPLIB

propput
[propput [,optional-property-attributes]] return-type func-name(parameters);

Example
 interface InMyFace : IDispatch
 {
 [propget, helpstring("A meaningful comment.")]
 HRESULT Method1([out, retval] int* retval);
 [propput, helpstring("Another meaningful comment.")]
 HRESULT Method1([in] int Value);
 }

Remarks

The propput attribute specifies a property-setting function. The property must have the same name as
the function.

A function that has the propput attribute must also have, as its last parameter, a parameter that has the
in attribute.

At most, one of propget, propput and propputref can be specified for a function.

Flags
INVOKE_PROPERTYPUT

See Also
TYPEFLAGS, ODL File Syntax, ODL File Example, Generating a Type Library With MIDL, Differences
Between MIDL and MKTYPLIB

propputref
[propputref [,optional-property-attributes]] return-type func-name(parameters);

Example
 interface InMyFace : IDispatch
 {
 [propget, helpstring("A meaningful comment."), id(1)]
 HRESULT Method2([out, retval] InYourFace** retval);
 [propputref, helpstring("Another meaningful comment."), id(1)]
 HRESULT Method2([in] InYourFace* Point);

Remarks

The propputref attribute specifies a property-setting function that uses a reference instead of a value.

A function that has the propputref attribute must also have, as its last parameter, a pointer that has the in
attribute.

The property must have the same name as the function. At most, one of propget, propput and
propputref attributes can be specified for a function.

Flags
INVOKE_PROPERTYPUTREF

See Also
TYPEFLAGS, ODL File Syntax, ODL File Example, Generating a Type Library With MIDL, Differences
Between MIDL and MKTYPLIB

public
typedef [public] data-type identifier;

Example
typedef [public] long MEMBERID;

Remarks

The public attribute includes an alias declared with the typedef keyword in the type library.

By default, an alias that is declared with typedef and has no other attributes is treated as a #define and
is not included in the type library. Using the public attribute ensures that the alias becomes part of the
type library.

Note The MIDL compiler requires that you explicitly apply the public attribute to each typedef that
you want public. This is in contrast to MKTYPLIB, which treated as public, every typedef inside of a
public interface block.

See Also
interface, ODL File Syntax, ODL File Example, Generating a Type Library With MIDL, Differences
Between MIDL and MKTYPLIB

ptr
pointer_default(ptr)

typedef [ptr [, type-attribute-list]] type-specifier declarator-list;

typedef struct-or-union-declarator {
[ptr [, field-attribute-list]] type-specifier declarator-list;
...}

[ptr [, function-attribute-list]] type-specifier ptr-decl function-name(
[[parameter-attribute-list]] type-specifier [declarator]
, ...

);
[[function-attribute-list]] type-specifier [ptr-decl] function-name(

[ptr [, parameter-attribute-list]] type-specifier [declarator]
, ...

);

type-attribute-list

Specifies one or more attributes that apply to the type. Valid type attributes include handle,
switch_type, transmit_as; the pointer attribute ref, unique, or ptr; and the usage attributes
context_handle, string, and ignore. Separate multiple attributes with commas.

type-specifier

Specifies a base_type, struct, union, or enum type or type identifier. An optional storage
specification can precede type-specifier.

declarator and declarator-list

Specifies standard C declarators, such as identifiers, pointer declarators, and array declarators. For
more information, see pointers and arrays. The declarator-list consists of one or more declarators
separated by commas. The parameter-name identifier in the function declarator is optional.

struct-or-union-declarator

Specifies a MIDL struct or union declarator.
field-attribute-list

Specifies zero or more field attributes that apply to the structure or union member or function
parameter. Valid field attributes include first_is, last_is, length_is, max_is, size_is; the usage
attributes string, ignore, and context_handle; the pointer attribute ref, unique, or ptr; and the union
attribute switch_type. Separate multiple field attributes with commas.

function-attribute-list

Specifies zero or more attributes that apply to the function. Valid function attributes are callback,
local; the pointer attribute ref, unique, or ptr; and the usage attributes string, ignore, and
context_handle.

ptr-decl

Specifies at least one pointer declarator to which the ptr attribute applies. A pointer declarator is the
same as the pointer declarator used in C; it is constructed from the * designator, modifiers such as
far, and the qualifier const.

function-name

Specifies the name of the remote procedure.
parameter-attribute-list

Consists of zero or more attributes appropriate for the specified parameter type. Parameter attributes
can take the directional attributes in and out; the field attributes first_is, last_is, length_is, max_is,
size_is, and switch_type; the pointer attribute ref, unique, or ptr; and the usage attributes
context_handle and string. The usage attribute ignore cannot be used as a parameter attribute.
Separate multiple attributes with commas.

Examples
pointer_default(ptr)

typedef [ptr, string] unsigned char * MY_STRING_TYPE;

[ptr] char * MyFunction([in, out, unique] long * plNumber);

Remarks

The ptr attribute designates a pointer as a full pointer. The full pointer approaches the full functionality of
the C-language pointer. The full pointer can have the value NULL and can change during the call from null
to non-null. Storage pointed to by full pointers can be reached by other names in the application
supporting aliasing and cycles. This functionality requires more overhead during a remote procedure call
to identify the data referred to by the pointer, determine whether the value is NULL, and to discover if two
pointers point to the same data.

Use full pointers for:

· Remote return values.
· Double pointers, when the size of an output parameter is not known.
· NULL pointers.

Full (and unique) pointers cannot be used to describe the size of an array or union because these
pointers can have the value NULL. This restriction by MIDL prevents an error that can result when a
NULL value is used as the size.

Reference and unique pointers are assumed to cause no aliasing of data. A directed graph obtained by
starting from a unique or reference pointer and following only unique or reference pointers contains
neither reconvergence nor cycles.

To avoid aliasing, all pointer values should be obtained from an input pointer of the same class of pointer.
If more than one pointer points to the same memory location, all such pointers must be full pointers.

In some cases, full and unique pointers can be mixed. A full pointer can be assigned the value of a unique
pointer, as long as the assignment does not violate the restrictions on changing the value of a unique
pointer. However, when you assign a unique pointer the value of a full pointer, you may cause aliasing.

Mixing full and unique pointers can cause aliasing, as demonstrated in the following example:

typedef struct {
 [ptr] short * pdata; // full pointer
} GRAPH_NODE_TYPE;

typedef struct {
 [unique] graph_node * left; // unique pointer

 [unique] graph_node * right; // unique pointer
} TREE_NODE_TYPE;

// application code:
short a = 5;
TREE_NODE_TYPE * t;
GRAPH_NODE_TYPE g, h;

g.pdata = h.pdata = &a;
t->left = &g;
t->right = &h;
// t->left->pdata == t->right->pdata == &a

Although "t->left" and "t->right" point to unique memory locations, "t->left->pdata" and "t->right->pdata"
are aliased. For this reason, aliasing-support algorithms must follow all pointers (including unique and
reference pointers) that may eventually reach a full pointer.

See Also
IDL, pointer_default, pointers, ref, unique

readonly
[readonly [, optional-attributes]] data-type identifier

Example
HRESULT Method3([in, readonly] int iMmutable);

Remarks

The readonly attribute prohibits assignment to a variable.

Flags
VARFLAG_FREADONLY

See Also
TYPEFLAGS, ODL File Syntax, ODL File Example, Generating a Type Library With MIDL, Differences
Between MIDL and MKTYPLIB

ref
pointer_default(ref)

typedef [ref [, type-attribute-list]] type-specifier declarator-list;

typedef struct-or-union-declarator {
[ref [, field-attribute-list]] type-specifier declarator-list;
...}

[[function-attribute-list]] type-specifier [ptr-decl] function-name(
[ref [, parameter-attribute-list]] type-specifier [declarator]
, ...

);

type-attribute-list

Specifies one or more attributes that apply to the type. Valid type attributes include handle,
switch_type, transmit_as; the pointer attributes ref, unique, or ptr; and the usage attributes
context_handle, string, and ignore. Separate multiple attributes with commas.

type-specifier

Specifies a base_type, struct, union, or enum type or type identifier. An optional storage
specification can precede type-specifier.

declarator and declarator-list

Specifies standard C declarators, such as identifiers, pointer declarators, and array declarators. For
more information, see pointers and arrays. The declarator-list consists of one or more declarators
separated by commas. The parameter-name identifier in the function declarator is optional.

struct-or-union-declarator

Specifies a MIDL struct or union declarator.
field-attribute-list

Specifies zero or more field attributes that apply to the structure, union member, or function
parameter. Valid field attributes include first_is, last_is, length_is, max_is, size_is; the usage
attributes string, ignore, and context_handle; the pointer attribute ref, unique, or ptr; and the union
attribute switch_type. Separate multiple field attributes with commas.

function-attribute-list

Specifies zero or more attributes that apply to the function. Valid function attributes are callback,
local; the pointer attribute ref, unique, or ptr; and the usage attributes string, ignore, and
context_handle.

ptr-decl

Specifies at least one pointer declarator to which the ref attribute applies. A pointer declarator is the
same as the pointer declarator used in C; it is constructed from the * designator, modifiers such as
far, and the qualifier const.

function-name

Specifies the name of the remote procedure.
parameter-attribute-list

Consists of zero or more attributes appropriate for the specified parameter type. Parameter attributes
can take the directional attributes in and out; the field attributes first_is, last_is, length_is, max_is,
size_is, and switch_type; the pointer attribute ref, unique, or ptr; and the usage attributes
context_handle and string. The usage attribute ignore cannot be used as a parameter attribute.
Separate multiple attributes with commas.

Example
[unique] char * GetFirstName(
 [in, ref] char * pszFullName
);

Remarks

The ref attribute identifies a reference pointer. It is used simply to represent a level of indirection.

A pointer attribute can be applied as a type attribute, as a field attribute that applies to a structure
member, union member, or parameter; or as a function attribute that applies to the function return type.
The pointer attribute can also appear with the pointer_default keyword.

A reference pointer has the following characteristics:

· Always points to valid storage; never has the value NULL. A reference pointer can always be
dereferenced.

· Never changes during a call. A reference pointer always points to the same storage on the client
before and after the call.

· Does not allocate new memory on the client. Data returned from the server is written into existing
storage specified by the value of the reference pointer before the call.

· Does not cause aliasing. Storage pointed to by a reference pointer cannot be reached from any other
name in the function.

A reference pointer cannot be used as the type of a pointer returned by a function.

If no attribute is specified for a top-level pointer parameter, it is treated as a reference pointer.

See Also
pointers, ptr, unique

represent_as
typedef [represent_as(repr-type) [, type-attribute-list]]

named-type;

void __RPC_USER named-type_from_local (
repr-type __RPC_FAR * ,
named-type __RPC_FAR * __RPC_FAR *);

void __RPC_USER named-type_to_local (
named-type __RPC_FAR * ,
repr-type __RPC_FAR *);

void __RPC_USER named-type_free_inst (
named-type __RPC_FAR *);

void __RPC_USER named-type_free_local (
repr-type__RPC_FAR *);

named-type

Specifies the named transfer data type that is transferred between client and server.
type-attribute-list

Specifies one or more attributes that apply to the type. Separate multiple attributes with commas.
repr-type

Specifies the represented local type in the target language that is presented to the client and server
applications.

Example
//these data types defined in .IDL or elsewhere
typedef struct _lbox {
 long data;
 struct _lbox *next;
} lbox;
typedef [ref] lbox *PBOX_LOC;
typedef long LONG4[4];

//in .ACF file :
interfaceFoo

{
typedef [represent_as(PBOX_LOC)] LONG4;
}

Remarks

The represent_as attribute associates a named local type in the target language repr-type with a transfer
type named-type that is transferred between client and server. You must supply routines that convert
between the local and the transfer types and that free memory used to hold the converted data. The
represent_as attribute instructs the stubs to call the user-supplied conversion routines.

The transferred type named-type must resolve to a MIDL base type, predefined type, or to a type
identifier. For more information, see base_types.

You must supply the following routines:

Routine name Description
named_type_from_local Allocates an instance of the network type

and converts from the local type to the
network type

named_type_to_local Converts from the network type to the local
type

named_type_free_local Frees memory allocated by a call to the
named_type_to_local routine, but not the
type itself

named_type_free_inst Frees storage for the network type (both
sides)

The client stub calls named-type_from_local to allocate space for the transmitted type and to translate
the data from the local type to the network type. The server stub allocates space for the original data type
and calls named-type_to_local to translate the data from the network type to the local type.

Upon return from the application code, the client and server stubs call named-type_free_inst to
deallocate the storage for network type. The client stub calls named-type_free_local to deallocate
storage returned by the routine.

The following types cannot have a represent_as attribute:

· Conformant, varying, or conformant varying arrays.
· Structures in which the last member is a conformant array (a conformant structure).
· Pointers or types that contain a pointer.
· Predefined types handle_t, void.
· A type cannot have both the represent_as attribute and the handle attribute.

See Also
ACF, arrays, base_types, typedef

requestedit
[requestedit [,optional-attributes]] return-type function-name(params)

Example
properties:
 [propget, helpstring("A useful comment"), bindable, defaultbind,
 displaybind, requestedit] long Func1(void);

Remarks

The requestedit attribute indicates that the property supports the OnRequestEdit notification. This means
that, before a change is made, the object will send the client a request for permission to change a
property. An object can support data binding but not have this attribute.

Flags
FUNCFLAG_FREQUESTEDIT, VARFLAG_FREQUESTEDIT

See Also
TYPEFLAGS, ODL File Syntax, ODL File Example, Generating a Type Library With MIDL, Differences
Between MIDL and MKTYPLIB

restricted
[restricted[, other-attributes]]

statement-type statement-name {definitions};

Examples
[uuid(. . .), version (1.0), restricted] library UCantTouchThis
{. . .};

[propget, restricted] HRESULT DontTouch(void);

Remarks

The restricted attribute specifies that a library, or member of a module, interface, or dispinterface cannot
be called arbitrarily. For example, this prevents a data item from being used by a macro programmer. You
can apply this attribute to a member of a coclass, independent of whether the member is a dispinterface
or interface, and independent of whether the member is a sink (incoming) or source (outgoing). A member
of a coclass cannot have both the restricted and default attributes.

Flags
IMPLTYPEFLAG_FRESTRICTED, FUNCFLAG_FRESTRICTED

See Also
TYPEFLAGS, library, interface, dispinterface, module, ODL File Syntax, ODL File Example,
Generating a Type Library With MIDL, Differences Between MIDL and MKTYPLIB

retval
return-type function-name([out, retval

 [, optional-attributes]] data-type * retval)

Examples
HRESULT MyMethod([out, retval] InMyFace** retval);
HRESULT MyOtherMethod([out, retval] boolean* retval);

Remarks

The retval attribute designates the parameter that receives the return value of the member. You can use
this atttribute on parameters of interface members that describe methods or get properties. (The attribute
is required on the last parameter of a method that has the propget attribute.) Note that the parameter
takes the name of the attribute. The parameter must have the out attribute and must be a pointer type.

You cannot apply the optional attribute to a retval parameter.

The MIDL compiler accepts the following parameter ordering (from left-to-right):

1. Required parameters (parameters that do not have the defaultvalue or optional attributes),
2. optional parameters with or without the defaultvalue attribute,
3. parameters with the optional attribute and without the defaultvalue attribute,
4. lcid parameter, if any,
5. retval parameter

Parameters with the retval attribute are not displayed in user-oriented browsers.

Flags
IDLFLAG_FRETVAL

See Also
TYPEFLAGS, ODL File Syntax, ODL File Example, Generating a Type Library With MIDL, Differences
Between MIDL and MKTYPLIB

shape
The DCE IDL keyword shape is not supported in Microsoft RPC.

See Also
IDL

short
The short keyword designates a 16-bit integer. The short keyword can be preceded by either the
keyword signed or the keyword unsigned. The int keyword is optional and can be omitted. To the MIDL
compiler, a short integer is signed by default and is synonymous with signed short int.

The short integer type is one of the base types of the IDL language. The short integer type can appear
as a type specifier in const declarations, typedef declarations, general declarations, and function
declarators (as a function-return-type specifier and a parameter-type specifier). For the context in which
type specifiers appear, see IDL.

See Also
base_types, IDL, int, long, small

signed
The signed keyword indicates that the most significant bit of an integer variable represents a sign bit
rather than a data bit. This keyword is optional and can be used with any of the character and integer
types char, wchar_t, long, short, and small.

When you use the MIDL compiler switch char, character and integer types that appear in the IDL file
without explicit sign keywords can appear with the signed or unsigned keywords in the generated
header file. To avoid confusion, explicitly specify the sign of the integer and character types.

See Also
base_types, IDL, int, long, short, small, unsigned

size_is
[size_is(limited-expression-list)]

limited-expression-list

Specifies one or more C-language expressions. Each expression evaluates to a non-negative integer
that represents the amount of memory allocated to a sized pointer or an array. In the case of an array,
specifies a single expression that represents the maximum allocation size, in elements, of the first
dimension of that array. The MIDL compiler supports conditional expressions, logical expressions,
relational expressions, and arithmetic expressions. MIDL does not allow function invocations in
expressions and does not allow increment and decrement operators. Use commas as placeholders
for implicit parameters, or to separate multiple expressions.

Examples
void Proc1(
 [in, short] m;
 [in, size_is(m)] short a[]); // if m = 10, a[10]
void Proc2(
 [in, short] m;
 [in, size_is(m)] short b[][20]); // if m = 10, b[10][20]
void Proc3(
 [in, short] m;
 [size_is(m)] short * pshort); //specifies a pointer
 // to an m-sized block of shorts
void Proc4(
 [in, short] m;
 [size_is(,m)] short ** ppshort); /*specifies a pointer
 to a pointer to an m-sized
 block of shorts */
void Proc5(
 [in, short] m;
 [size_is(m,)] short ** ppshort); /*specifies an
 m-sized block of pointers to shorts */
void Proc6(
 [in, short] m;
 [in, short] n;
 [size_is(m,n)] short ** ppshort); /* specifies a
 pointer to an m-sized block of pointers,
 each of which points to an n-sized
 block of shorts.*/

Remarks

You can use the size_is attribute to specify the size of memory allocated for sized pointers, sized pointers
to sized pointers, and single- or multi-dimensional arrays. However, if you are using array [] notation, only
the first dimension of a multi-dimensional array can be determined at run time.

For more information on using the size_is attribute with multiple levels of pointers to enable a server to
return a dynamically-sized array of data to a client, see Multiple Levels of Pointers.

You can use either size_is or max_is (but not both in the same attribute list) to specify the size of an
array whose upper bounds are determined at run time. Note, however, that the size_is attribute cannot be
used on array dimensions that are fixed. The max_is attribute specifies the maximum valid array index.

As a result, specifying size_is(n) is equivalent to specifying max_is(n-1).

An in or in, out conformant-array parameter with the string attribute need not have the size_is or
max_is attribute. In this case, the size of the allocation is determined from the null terminator of the input
string. All other conformant arrays with the string attribute must have a size_is or max_is attribute.

While it is legal to use the size_is attribute with a constant, doing so is inefficient and unnecessary. For
example, use a fixed size array:

void Proc3([in] short Arr[MAX_SIZE]);

instead of:

// legal but marshalling code is much slower
void Proc3([in size_is(MAX_SIZE)] short Arr[]);

See Also

arrays, field_attributes, first_is, IDL, last_is, length_is, max_is, min_is

small
The small keyword designates an 8-bit integer number. The small keyword can be preceded by either
the keyword signed or the keyword unsigned. The int keyword is optional and can be omitted. To the
MIDL compiler, a small integer is signed by default and is synonymous with signed small int.

The small integer type is one of the base types of the IDL language. The small integer type can appear
as a type specifier in const declarations, typedef declarations, general declarations, and function
declarators (as a function-return-type specifier and as a parameter-type specifier). For the context in
which type specifiers appear, see IDL.

The sign of the small type can be modified by the MIDL compiler switch /char. To avoid confusion,
specify the sign of the integer type with the keywords signed and unsigned.

See Also
/char, int, long, short

source
[source [, optional-attributes]] statement-type statement-name {definitions};

Example
[default, source] dispinterface DIMyFaceAdviseSink;
[source]interface IMyFaceAdviseSink;

Remarks

The source attribute indicates that a member of a coclass, property, or method is a source of events. For
a member of a coclass, this attribute means that the member is called rather than implemented.

On a property or method, the source attribute indicates that the member returns an object or VARIANT
that is a source of events. The object implements IConnectionPointContainer.

Flags
IMPLTYPEFLAG_FSOURCE, VARFLAG_SOURCE, FUNCFLAG_SOURCE

See Also
TYPEFLAGS, ODL File Syntax, ODL File Example, Generating a Type Library With MIDL, Differences
Between MIDL and MKTYPLIB

string
typedef [string [, type-attribute-list]] type-specifier declarator-list;

typedef struct-or-union-declarator {
[string [, field-attribute-list]] type-specifier declarator-list;
...}

[string [, function-attribute-list]] type-specifier ptr-decl function-name(
[[parameter-attribute-list]] type-specifier [declarator]
, ...

);
[[function-attribute-list]] type-specifier [ptr-decl] function-name(

[string [, parameter-attribute-list]] type-specifier [declarator]
, ...

);

type-attribute-list

Specifies one or more attributes that apply to a type. Valid type attributes include handle,
switch_type, transmit_as; the pointer attribute ref, unique, or ptr; and the usage attributes
context_handle, string, and ignore. Separate multiple attributes with commas.

type-specifier

Specifies a base_type, struct, union, or enum type or type identifier. An optional storage
specification can precede type-specifier.

declarator and declarator-list

Specify standard C declarators, such as identifiers, pointer declarators, and array declarators. For
more information, see pointers and arrays. The declarator-list consists of one or more declarators
separated by commas. The parameter-name identifier in the function declarator is optional.

struct-or-union-declarator

Specifies a MIDL struct or union declarator.
field-attribute-list

Specifies zero or more field attributes that apply to the structure, union member, or function
parameter. Valid field attributes include first_is, last_is, length_is, max_is, size_is; the usage
attributes string, ignore, and context_handle, the pointer attribute ref, unique, or ptr, and the union
attribute switch_type. Separate multiple field attributes with commas.

function-attribute-list

Specifies zero or more attributes that apply to the function. Valid function attributes are callback,
local; the pointer attribute ref, unique, or ptr; and the usage attributes string, ignore, and
context_handle.

ptr-decl

Specifies an optional pointer declarator to which the string attribute applies. A pointer declarator is
the same as the pointer declarator used in C; it is constructed from the * designator, modifiers such as
far, and the qualifier const.

function-name

Specifies the name of the remote procedure.

parameter-attribute-list

Consists of zero or more attributes appropriate for the specified parameter type. Parameter attributes
can take the directional attributes in and out; the field attributes first_is, last_is, length_is, max_is,
size_is, and switch_type; the pointer attribute ref, unique, or ptr; and the usage attributes
context_handle and string. The usage attribute ignore cannot be used as a parameter attribute.
Separate multiple attributes with commas.

Example
/* a string type that can hold up to 80 characters */
typedef [string] char line[81];

void Proc1([in, string] char * pszName);

Remarks

The string attribute indicates that the one-dimensional char, wchar_t, byte (or equivalent) array or the
pointer to such an array must be treated as a string.

The string can also be an array (or a pointer to an array) of constructs whose fields are all of the type
"byte."

If the string attribute is used with an array whose bounds are determined at run time, you must also
specify a size_is or max_is attribute.

The string attribute cannot be used with attributes that specify the range of transmitted elements, such as
first_is, last_is, and length_is.

When used on multidimensional arrays, the string attribute applies to the rightmost array.

To define a counted string, do not use the string attribute. Use a character array or character-based
pointer such as the following:

typedef struct {
 unsigned short size;
 unsigned short length;
 [size_is(size), length_is(length)] char string[*];
} counted_string;

The string attribute specifies that the stub should use a language-supplied method to determine the
length of strings.

When declaring strings in C, you must allocate space for an extra character that marks the end of the
string.

See Also
arrays, char, wchar_t

struct
struct [struct-tag] {

[[field-attribute-list]] type-specifier declarator-list;
...

}

struct-tag

Specifies an optional tag for the structure.
field-attribute-list

Specifies zero or more field attributes that apply to the structure member. Valid field attributes include
first_is, last_is, length_is, max_is, size_is; the usage attributes string, ignore, and
context_handle; the pointer attribute ref, unique, or ptr; and the union attribute switch_type.
Separate multiple field attributes with commas.

type-specifier

Specifies a base_type, struct, union, or enum type or type identifier. An optional storage
specification can precede type-specifier.

declarator-list

Specifies one or more standard C declarators, such as identifiers, pointer declarators, and array
declarators. (Function declarators and bit-field declarations are not allowed in structures that are
transmitted in remote procedure calls. These declarators are allowed in structures that are not
transmitted.) Separate multiple declarators with commas.

Example
typedef struct _PITCHER_RECORD_TYPE {
 short flag;
 [switch_is(flag)] union PITCHER_STATISTICS_TYPE p;
} PITCHER_RECORD_TYPE;

Remarks

The struct keyword is used in a structure type specifier. The IDL structure type specifier differs from the
standard C type specifier in the following ways:

· Each structure member can be associated with optional field attributes that describe characteristics of
that structure member for the purposes of a remote procedure call.

· Bit fields and function declarators are not allowed in structures that are used in remote procedure
calls. These standard C declarator constructs can be used only if the structure is not transmitted on
the network.

The shape of structures must be the same across platforms to ensure interconnectivity.

See Also
arrays, base_types, /c_ext, IDL, /osf, pointers

switch
switch (switch-type switch-name)

switch-type

Specifies an int, char, enum type, or an identifier that resolves to one of these types.
switch-name

Specifies the name of the variable of type switch-type that acts as the union discriminant.

Examples
typedef union _S1_TYPE switch (long l1) U1_TYPE {
 case 1024:
 float f1;
 case 2048:
 double d2;
} S1_TYPE;

/* in generated header file */
typedef struct _S1_TYPE {
 long l1;
 union {
 float f1;
 double d2;
 } U1_TYPE;
} S1_TYPE;

Remarks

The switch keyword selects the discriminant for an encapsulated_union.

See Also
IDL, non-encapsulated_union, switch_is, switch_type, union

switch_is
typedef struct [struct-tag] {

[switch_is(limited-expr) [, field-attr-list]] union-type-specifier declarator;
...

}

[[function-attribute-list]] type-specifier [pointer-declarator] function-name(
[switch_is(limited-expr) [, param-attr-list]] union-type [declarator]
, ...

);

struct-tag

Specifies an optional tag for a structure.
limited-expr

Specifies a C-language expression supported by MIDL. Almost all C-language expressions are
supported. The MIDL compiler supports conditional expressions, logical expressions, relational
expressions, and arithmetic expressions. MIDL does not allow function invocations in expressions
and does not allow pre- and post-increment and -decrement operators.

field-attr-list

Specifies zero or more field attributes that apply to a union member. Valid field attributes include
first_is, last_is, length_is, max_is, size_is; the usage attributes string, ignore, and
context_handle; the pointer attribute ref, unique, or ptr; and for members that are themselves
unions, the union attribute switch_type. Separate multiple field attributes with commas.

union-type-specifier

Specifies the union type identifier. An optional storage specification can precede type-specifier.
declarator and declarator-list

Specifies a standard C declarator, such as an identifier, pointer declarator, and array declarator.
(Function declarators and bit-field declarations are not allowed in unions that are transmitted in
remote procedure calls. These declarators are allowed in unions that are not transmitted.) Separate
multiple declarators with commas.

function-attribute-list

Specifies zero or more attributes that apply to the function. Valid function attributes are callback,
local; the pointer attribute ref, unique, or ptr; and the usage attributes string, ignore, and
context_handle.

type-specifier

Specifies a base_type, struct, union, enum type, or type identifier. An optional storage specification
can precede type-specifier.

pointer-declarator

Specifies zero or more pointer declarators. A pointer declarator is the same as the pointer declarator
used in C; it is constructed from the * designator, modifiers such as far, and the qualifier const.

function-name

Specifies the name of the remote procedure.
param-attr-list

Specifies zero or more attributes appropriate for the specified parameter type. Parameter attributes
can take the directional attributes in and out, the field attributes first_is, last_is, length_is, max_is,
size_is, and switch_type; the pointer attribute ref, unique, or ptr; and the usage attributes
context_handle and string. The usage attribute ignore cannot be used as a parameter attribute.
Separate multiple attributes with commas.

union-type

Identifies the union type specifier.

Examples
typedef [switch_type(short)] union _WILLIE_UNION_TYPE {
 [case(24)]
 float fMays;
 [case(25)]
 double dMcCovey;
 [default]
 ;
} WILLIE_UNION_TYPE;

typedef struct _WINNER_TYPE {
 [switch_is(sUniformNumber)] union WILLIE_UNION_TYPE w;
 short sUniformNumber;
} WINNER_TYPE;

Remarks

The switch_is attribute specifies the expression or identifier acting as the union discriminant that selects
the union member. The discriminant associated with the switch_is attribute must be defined at the same
logical level as the union:

· When the union is a parameter, the union discriminant must be another parameter.
· When the union is a field of a structure, the discriminant must be another field of the same structure.

The sequence in a structure or a function parameter list is not significant. The union can either precede or
follow the discriminant.

The switch_is attribute can appear as a field attribute or as a parameter attribute.

See Also
encapsulated_union, non-encapsulated_union, switch_type, union

switch_type
switch_type(switch-type-specifier)

switch-type-specifier

Specifies an integer, character, boolean, or enum type, or an identifier of such a type.

Examples
typedef [switch_type(short)] union _WILLIE_UNION_TYPE {
 [case(24)]
 float fMays;
 [case(25)]
 double dMcCovey;
 [default]
 ;
} WILLIE_UNION_TYPE;

typedef struct _WINNER_TYPE {
 [switch_is(sUniformNumber)] union WILLIE_UNION_TYPE w;
 short sUniformNumber;
} WINNER_TYPE;

Remarks

The switch_type attribute identifies the type of the variable used as the union discriminant. The switch
type can be an integer, character, boolean, or enum type.

The switch_is attribute specifies the name of the parameter that is the union discriminant. The switch_is
attribute applies to parameters or members of structures or unions.

The union and its discriminant must be specified at the same logical level. When the union is a parameter,
the union discriminant must be another parameter. When the union is a field of a structure, the
discriminant must be another field of the structure at the same level as the union field.

See Also
encapsulated_union, IDL, non-encapsulated_union, switch_is, union

transmit_as
typedef [transmit_as(xmit-type) [, type-attribute-list]]

type-specifier declarator-list;

void __RPC_USER type-id_to_xmit (
type-id __RPC_FAR *,
xmit-type __RPC_FAR * __RPC_FAR *);

void __RPC_USER type-id_from_xmit (
xmit-type __RPC_FAR *,
type-id __RPC_FAR *);

void __RPC_USER type-id_free_inst (
type-id __RPC_FAR *);

void __RPC_USER type-id_free_xmit (
xmit-type__RPC_FAR *);

xmit-type

Specifies the data type that is transmitted between client and server.
type-attribute-list

Specifies one or more attributes that apply to the type. Valid type attributes include handle,
switch_type; the pointer attribute ref, unique, or ptr; and the usage attributes string and ignore.
Separate multiple attributes with commas.

type-specifier

Specifies a base_type, struct, union, enum type, or type identifier. An optional storage specification
can precede type-specifier.

declarator-list

Specifies standard C declarators, such as identifiers, pointer declarators, and array declarators. For
more information, see pointers and arrays. The declarator-list consists of one or more declarators
separated by commas. The parameter declarator in the function declarator, such as the parameter
name, is optional.

type-id

Specifies the name of the data type that is presented to the client and server applications.

Examples
typedef struct _TREE_NODE_TYPE {
 unsigned short data;
 struct _TREE_NODE_TYPE * left;
 struct _TREE_NODE_TYPE * right;
} TREE_NODE_TYPE;

typedef [transmit_as(TREE_XMIT_TYPE)] TREE_NODE_TYPE * TREE_TYPE;

void __RPC_USER TREE_TYPE_to_xmit(
 TREE_TYPE __RPC_FAR * ,
 TREE_XMIT_TYPE __RPC_FAR * __RPC_FAR *);

void __RPC_USER TREE_TYPE_from_xmit (
 TREE_XMIT_TYPE __RPC_FAR *,
 TREE_TYPE __RPC_FAR *);

void __RPC_USER TREE_TYPE_free_inst(
 TREE_TYPE __RPC_FAR *);

void __RPC_USER TREE_TYPE_free_xmit(
 TREE_XMIT_TYPE __RPC_FAR *);

Remarks

The transmit_as attribute instructs the compiler to associate type-id, a presented type that client and
server applications manipulate, with a transmitted type xmit-type. The user must supply routines that
convert data between the presented and the transmitted types; these routines must also free memory
used to hold the converted data. The transmit_as attribute instructs the stubs to call the user-supplied
conversion routines.

The transmitted type xmit-type must resolve to a MIDL base type, predefined type, or a type identifier. For
more information, see base_types.

The user must supply the following routines:

Routine name Description
type-id_to_xmit Converts data from the presented type to the

transmitted type
type-id_from_xmit Converts data from the transmitted type to the

presented type
type-id_free_inst Frees storage used by the callee for the

presented type
type-id_free_xmit Frees storage used by the caller for the

transmitted type

The client stub calls type-id_to_xmit to allocate space for the transmitted type and to translate the data
into objects of type xmit-type. The server stub allocates space for the original data type and calls type-
id_from_xmit to translate the data from its transmitted type to the presented type.

Upon return from the application code, the server stub calls type-id_free_inst to deallocate the storage
for type-id on the server side. The client stub calls type-id_free_xmit to deallocate the xmit-type storage
on the client side.

The following types cannot have a transmit_as attribute:

· Context handles (types with the context_handle type attribute and types that are used as parameters
with the context_handle attribute)

· Parameters that are conformant, varying, or open arrays
· Structures that contain conformant arrays
· The predefined type handle_t, void

When a pointer attribute appears as one of the type attributes with the transmit_as attribute, the pointer

attribute is applied to the xmit_type parameter of the type-id-to_xmit and type-id-from_xmit routines.

See Also
arrays, base_types, context_handle, IDL, typedef

typedef
/* IDL file typedef syntax */

typedef [[idl-type-attribute-list]] type-specifier declarator-list;

/* ACF typedef syntax */
typedef [acf-type-attribute-list] typename;

idl-type-attribute-list

Specifies one or more attributes that apply to the type. Valid type attributes in an IDL file include
handle, switch_type, transmit_as; the pointer attribute ref, unique, or ptr; and the usage attributes
context_handle, string, and ignore. Separate multiple attributes with commas.

type-specifier

Specifies a base_type, struct, union, enum type, or type identifier. An optional storage specification
can precede type-specifier. The const keyword can precede type-specifier.

declarator-list

Specifies standard C declarators, such as identifiers, pointer declarators, and array declarators. For
more information, see pointers and arrays. The declarator-list consists of one or more declarators,
separated by commas.

acf-type-attribute-list

Specifies one or more attributes that apply to the type. Valid type attributes in an ACF include
allocate, encode, and decode.

typename

Specifies a type defined in the IDL file.

Remarks
The IDL typedef keyword allows typedef declarations that are very similar to C-language typedef
declarations. The IDL typedef declaration is augmented to allow you to associate type attributes with the
defined types. Valid type attributes include handle, switch_type, transmit_as; the pointer attribute ref,
unique, or ptr; and the usage attributes context_handle, string, and ignore.

The typedef keyword in an ACF applies attributes to types that are defined in the corresponding IDL file.
For example, the allocate type attribute allows you to customize memory allocation and deallocation by
both the application and the stubs.

The ACF typedef statement appears as part of the ACF_body. Note that the ACF typedef syntax is
different from the IDL typedef syntax and the C-language typedef syntax. No new types can be
introduced in the ACF.

See Also
ACF, allocate, decode, encode, IDL

union
The union keyword appears in functions that relate to discriminated unions.

MIDL supports two types of discriminated unions: encapsulated unions and nonencapsulated unions. The
encapsulated union is compatible with previous implementations of RPC (NCA version 1). The
nonencapsulated union eliminates some of the restrictions of the encapsulated union and provides a
more visible discriminant than the encapsulated union.

The encapsulated union is identified by the switch keyword and the absence of other union-related
keywords.

The nonencapsulated union, also known as a union, is identified by the presence of the switch_is and
switch_type keywords, which identify the discriminant and its type.

When you use in, out unions, be aware that changing the value of the union switch during the call can
make the remote call behave differently from a local call. On return, the stubs copy the in, out parameter
into memory that is already present on the client. When the remote procedure modifies the value of the
union switch and consequently changes the data object's size, the stubs can overwrite valid memory with
the out value. When the union switch changes the data object from a base type to a pointer type, the
stubs can overwrite valid memory when they copy the pointer referent into the memory location indicated
by the in value of a base type.

The shape of unions must be identical across platforms to ensure interconnectivity.

See Also
encapsulated_union, IDL, non-encapsulated_union, switch_is, switch_type

unique
pointer_default(unique)

typedef [unique [, type-attribute-list]] type-specifier declarator-list;

typedef struct-or-union-declarator {
[unique [, field-attribute-list]] type-specifier declarator-list;
...}

[unique [, function-attribute-list]] type-specifier ptr-decl function-name(
[[parameter-attribute-list]] type-specifier [declarator]
, ...

);
[[function-attribute-list]] type-specifier [ptr-decl] function-name(

[unique [, parameter-attribute-list]] type-specifier [declarator]
, ...

);

type-attribute-list

Specifies one or more attributes that apply to the type. Valid type attributes include handle,
switch_type, transmit_as; the pointer attribute ref, unique, or ptr; and the usage attributes
context_handle, string, and ignore. Separate multiple attributes with commas.

type-specifier

Specifies a base_type, struct, union, enum type, or type identifier. An optional storage specification
can precede type-specifier.

declarator and declarator-list

Specifies standard C declarators, such as identifiers, pointer declarators, and array declarators. For
more information, see pointers and arrays. The declarator-list consists of one or more declarators
separated by commas. The parameter-name identifier in the function declarator is optional.

struct-or-union-declarator

Specifies a MIDL struct or union declarator.
field-attribute-list

Specifies zero or more field attributes that apply to the structure member, union member, or function
parameter. Valid field attributes include first_is, last_is, length_is, max_is, size_is; the usage
attributes string, ignore, and context_handle; the pointer attribute ref, unique, or ptr; and the union
attribute switch_type. Separate multiple field attributes with commas.

function-attribute-list

Specifies zero or more attributes that apply to the function. Valid function attributes are callback,
local; the pointer attribute ref, unique, or ptr; and the usage attributes string, ignore, and
context_handle.

ptr-decl

Specifies at least one pointer declarator to which the unique attribute applies. A pointer declarator is
the same as the pointer declarator used in C; it is constructed from the * designator, modifiers such as
far, and the qualifier const.

function-name

Specifies the name of the remote procedure.
parameter-attribute-list

Consists of zero or more attributes appropriate for the specified parameter type. Parameter attributes
can take the directional attributes in and out; the field attributes first_is, last_is, length_is, max_is,
size_is, and switch_type; the pointer attribute ref, unique, or ptr; and the usage attributes
context_handle and string. The usage attribute ignore cannot be used as a parameter attribute.
Separate multiple attributes with commas.

Example
pointer_default(unique)

typedef [unique, string] unsigned char * MY_STRING_TYPE;

[unique] char * MyFunction([in, out, unique] long * plNumber);

Remarks

The unique attribute specifies a unique pointer.

Pointer attributes can be applied as a type attribute; as a field attribute that applies to a structure member,
union member, or parameter; or as a function attribute that applies to the function return type. The pointer
attribute can also appear with the pointer_default keyword.

A unique pointer has the following characteristics:

· Can have the value NULL.
· Can change during a call from NULL to non-null, from non-null to NULL, or from one non-null value to

another.
· Can allocate new memory on the client. When the unique pointer changes from NULL to non-null,

data returned from the server is written into new storage.
· Can use existing memory on the client without allocating new memory. When a unique pointer

changes during a call from one non-null value to another, the pointer is assumed to point to a data
object of the same type. Data returned from the server is written into existing storage specified by the
value of the unique pointer before the call.

· Can orphan memory on the client. Memory referenced by a non-null unique pointer may never be
freed if the unique pointer changes to NULL during a call and the client does not have another means
of dereferencing the storage.

· Does not cause aliasing. Like storage pointed to by a reference pointer, storage pointed to by a
unique pointer cannot be reached from any other name in the function.

The stubs call the user-supplied memory-management functions midl_user_allocate and
midl_user_free to allocate and deallocate memory required for unique pointers and their referents.

The following restrictions apply to unique pointers:

· The unique attribute cannot be applied to binding-handle parameters (handle_t) and context-handle
parameters.

· The unique attribute cannot be applied to out-only top-level pointer parameters (parameters that
have only the out directional attribute).

· Unique pointers cannot be used to describe the size of an array or union arm because unique

pointers can have the value NULL. This restriction prevents the error that results if a null value is used
as the array size or the union-arm size.

See Also
pointer_default, pointers, ptr, ref

unsigned
The unsigned keyword indicates that the most significant bit of an integer variable represents a data bit
rather than a signed bit. This keyword is optional and can be used with any of the character and integer
types char, wchar_t, int, long, short, and small.

When you use the MIDL compiler switch /char, character and integer types that appear in the IDL file
without explicit sign keywords can appear with the signed or unsigned keyword in the generated header
file. To avoid confusion, explicitly specify the sign of the integer and character types.

See Also
base_types, /char, IDL, int, long, short, signed, small

user_marshal
typedef [user_marshal(userm_type)] wire-type;

unsigned long __RPC_USER < userm_type >_UserSize(
unsigned long __RPC_FAR *pFlags,
unsigned long StartingSize,
< userm_type > __RPC_FAR * pUser_typeObject);

unsigned char __RPC_FAR * __RPC_USER < userm_type >_UserMarshal(
unsigned long __RPC_FAR *pFlags,
unsigned char __RPC_FAR * Buffer,
< userm_type > __RPC_FAR * pUser_typeObject);

unsigned char __RPC_FAR * __RPC_USER < userm_type >_UserUnmarshal(
unsigned long __RPC_FAR * pFlags,
unsigned char __RPC_FAR * Buffer,
< userm_type > __RPC_FAR * pUser_typeObject);

void __RPC_USER < userm_type >_UserFree(
unsigned long __RPC_FAR * pFlags,
< userm_type > __RPC_FAR * pUser_typeObject);

userm-type

Specifies the id of the user data type to be marshaled. The userm-type need not be remotable and
need not be a type known to the MIDL compiler.

wire-type

Specifies the named transfer data type that is actually transferred between client and server. the wire-
type must be a MIDL base type, predefined type, or a type identifier of a remotable.

pFlags

Specifies a pointer to a flag field(unsigned long). The high-order word specifies NDR data
representation flags as defined by DCE for floating point, big- or little-endian, and character
representation. The low-order word specifies a marshaling context flag. The exact layout of the flags
is described in The type_UserSize Function.

StartingSize

Specifies the current buffer size (offset) before sizing the object.
Buffer

Specifies the current buffer pointer.
pUser_typeObject

Specifies a pointer to an object of userm_type.

Example
// Marshal a long as a structure containing two shorts.
typedef unsigned long FOUR_BYTE_DATA;
typedef struct _TWO_X_TWO_BYTE_DATA {
 unsigned short low;
 unsigned short high;
} TWO_X_TWO_BYTE_DATA;

//in ACFL file:
typedef [user_marshal(FOUR_BYTE_DATA)] TWO_X_TWO_BYTE_DATA;
//Marshaling functions:
unsigned long __RPC_USER FOUR_BYTE_DATA_UserSize(
 ULONG __RPC_FAR * pulFlags,
 char __RPC_FAR * pBufferStart,
 FOUR_BYTE_DATA __RPC_FAR * pul
);//calculate size that converted data will
 // require in the buffer
unsigned long __RPC_USER FOUR_BYTE_DATA_UserMarshal(
 ULONG __RPC_FAR *pulFlags,
 char __RPC_FAR * pBufferStart,
 FOUR_BYTE_DATA __RPC_FAR * pul
);//copy FOUR_BYTE_DATA into buffer as
 //TWO_X_TWO_BYTE_DATA
unsigned long __RPC_USER FOUR_BYTE_DATA_UserUnmarshal(
 ULONG __RPC_FAR * pulFlags,
 char __RPC_FAR * pBufferStart,
 FOUR_BYTE_DATA __RPC_FAR * pul
);//recreate FOUR_BYTE_DATA from TWO_X_TWO_BYTE_DATA
 //in buffer
void __RPC_USER FOUR_BYTE_DATA_UserFree(
 ULONG __RPC_FAR * pulFlags,
 FOUR_BYTE_DATA __RPC_FAR * pul
);//nothing to do here as the engine frees the
 // top node and FOUR_BYTE_DATA is a flat data
 //type.

Remarks

The user_marshal attribute associates a named local type in the target language (userm-type) with a
transfer type (wire-type) that is transferred between client and server. Each userm-type has a one-to-one
correspondence with a wire-type that defines the wire representation of the type. You must supply
routines to size the data for marshaling, to marshal and unmarshal the data, and to free memory. For
more information on these routines, see The user_marshal Attribute. Note that if there are embedded
types in your data that are also defined with user_marshal or wire_marshal, you need to manage the
servicing of those embedded types also.

The wire-type cannot be an interface pointer or a full pointer. The wire-type must have a well-defined
memory size. See Marshaling Rules for user_marshal and wire_marshal for details on how to marshal a
given wire-type.

The userm-type should not be an interface pointer as these can be marshaled directly. If the user type is a
full pointer, you must manage the aliasing yourself.

See Also
The user_marshal Attribute, wire_marshal, represent_as, base_types

usesgetlasterror
[module-attributes] module module-name

{[entry(entry-id), usesgetlasterror [, other-attributes]] return-typefunction-name(param-list);
};

Example
[dllname("MyOwn.dll")] module MyModule
 {
 [entry("One"), usesgetlasterror, bindable, requestedit,
 propputref, defaultbind]
 void Func1 ([in]IUnknown * iParam1, [out] long * Param2) ;
 [entry("TwentyOne"), usesgetlasterror, hidden, vararg]
 SAFEARRAY (int) Func2 ([in, out] SAFEARRAY (variant) *varP) ;
. . .};

Remarks

The usesgetlasterror attribute can be set on a module entry point, if that entry point uses the Win32
function SetLastError to return error codes. The attribute tells the caller that, if there is an error when
calling that function, the caller can then call GetLastError to retrieve the error code.

See Also
ODL File Syntax, ODL File Example, Generating a Type Library With MIDL, Differences Between MIDL
and MKTYPLIB

uuid
uuid (string_uuid)

uuid ("string-uuid")

string-uuid

Specifies a string consisting of eight hexadecimal digits followed by a hyphen, then three groups of
four hexadecimal digits each followed by a hyphen, then twelve hexadecimal digits. You can enclose
the UUID string in quotes, except when you use the MIDL compiler switch /osf.

Examples
uuid(6B29FC40-CA47-1067-B31D-00DD010662DA)

uuid("6B29FC40-CA47-1067-B31D-00DD010662DA")

Remarks

The uuid interface attribute designates a universally unique identifier (UUID) that is assigned to the
interface and that distinguishes it from other interfaces. The run-time library uses the interface UUID to
help establish communication between the client and server applications.The uuid attribute can appear in
the interface attribute list for either an RPC interface or an OLE interface.

For an RPC interface, the interface attribute list must include either the uuid attribute or the local
attribute, and the one you choose must occur exactly once. If the list includes the uuid attribute, it can
also include the version attribute.

For an OLE interface (identified by the object interface attribute), the interface attribute list must include
the uuid attribute, but it cannot include the version attribute. The list for an OLE interface can include the
local attribute even though the uuid attribute is present.

Microsoft RPC supports an extension to DCE IDL that allows the UUID to be enclosed in double quotation
marks. The quoted form is needed for C-compiler preprocessors that interpret UUID numbers as floating-
point numbers.

All UUID values should be computer-generated to guarantee uniqueness. Use the uuidgen utility to
generate unique UUID values.

The UUID and version numbers of the interface are used to determine whether the client can bind to the
server. For the client to bind to the server, the UUID specified in the client and server interfaces must be
the same.

Note that an interface without attributes can be imported into a base IDL file. However, the interface must
contain only datatypes with no procedures. If even one procedure is contained in the interface, a local or
UUID attribute must be specified.

See Also
IDL, interface, local, /osf, version

v1_enum
[v1_enum] enum {...}

Example
typedef [v1_enum] enum {label1, label2, ...};

Remarks

The v1_enum attribute directs that the specified enumerated type be transmitted as a 32-bit entity, rather
than the 16-bit default. This increases the efficiency of marshalling and unmarshalling data when such an
enumerator is embedded in structures or unions.

For improved performance, we recommend applying the v1_enum attribute to enumerators in 32-bit
applications. Keep in mind, however, that on 16-bit platforms the C compiler treats an enumerated type as
a 16-bit int. Therefore 16-bit client applications need to convert enum types to long for remote
transmission in order to avoid overwriting data or sending incorrect values.

See Also
enum, IDL

vararg
[vararg [, optional-attributes]] return-type function-name([optional-param-attributes] param-list,

SAFEARRAY(VARIANT) last-param-name)

optional-attributes

Specifies zero or more attributes to be applied to the function. Separate multiple attributes with
commas.

optional-param-attributes

Specifies zero or more attributes to be applied to the function parameter immediately following the
attribute listing.

param-list

Specifies all the parameters, save the final, varying, parameters.

Example
[vararg] boolean Button([in]SAFEARRAY(VARIANT) psa);

Remarks

The vararg attribute specifies that the function takes a variable number of arguments. To accomplish this,
the last argument must be a safe array of VARIANT type that contains all the remaining arguments.

You cannot apply the optional or defaultvalue attributes to any parameters in a function that has the
vararg attribute.

See Also
ODL File Syntax, ODL File Example, Generating a Type Library With MIDL, Differences Between MIDL
and MKTYPLIB

version
version (major-value[. minor-value])

major-value

Specifies a short unsigned integer between zero and 65,535, inclusive, that represents the major
version number.

minor-value

Specifies a short unsigned integer between zero and 65,535, inclusive, that represents the minor
version number. The minor version value is optional. If present, the minor version value is separated
from the major version number by a period character (.). If not specified, the minor version value is
zero.

Remarks
The version interface attribute identifies a particular version among multiple versions of an RPC
interface. With the version attribute, you ensure that only compatible versions of client and server
software are allowed to bind.

The MIDL compiler does not support multiple versions of an OLE interface. As a result, an interface
attribute list that includes the object attribute cannot include the version attribute. To create a new
version of an existing OLE interface, use interface inheritance. A derived OLE interface has a different
UUID but inherits the interface member functions, status codes, and interface attributes of the base
interface.

In combination with the uuid value, the version value uniquely identifies the interface. The run-time
library passes the version and uuid values to the server when the client calls a remote function. A client
can bind to a server for a given interface if:

· The uuid value is the same.
· The major version number is the same.
· The client's minor version number is less than or equal to the server's minor version number.

It is to your benefit and your users' benefit to retain upward compatibility among versions ¾ that is, to
modify the interface so that only the minor version number changes. You can retain upward compatibility
when you add new data types that are not used by existing functions and when you add new functions
without changing the interface specification for existing functions.

Change the major version number if any one of the following conditions apply:

· If you change a data type that is used by an existing function.
· If you change the interface specification for an existing function (such as adding or removing a

parameter).
· If you add callbacks that are called by existing functions.

Change the minor version number if all of the following conditions apply:

· If you add type definitions or constants that are not used by any existing functions or callbacks.
· If you do not change any existing functions and you add new functions to the interface.
· If you add callbacks that are not called by any existing functions and the new callbacks follow any

existing functions.

If your modifications qualify as an upward-compatible change to the interface, use the following procedure
to modify the interface (IDL) file:

1. Add new constant and type definitions to the interface file.
2. Add callback functions to the end of the interface file.
3. Add new functions to the end of the interface file.

The version attribute can occur at most once in the interface header.

When the version attribute is not present, the interface has a default version of 0.0.

The period character between the major and minor numbers is a delimiter and does not represent a
decimal point. The minor number is treated as an integer. Leading zeroes are not significant. Trailing
zeroes are significant.

For example, the version setting 1.11 represents a major value of one and a minor value of eleven.
Version 1.11 does not represent a value between 1.1 and 1.2.

See Also
IDL, interface, uuid

void
void function (parameter-list);

return-type function(void);
typedef [context_handle] void * context-handle-type;
return-type function (...[context_handle] void * * context-handle-type...);

function

Specifies the name of the remote procedure.
parameter-list

Specifies the list of parameters passed to the function along with the associated parameter types and
parameter attributes.

return-type

Specifies the name of the type returned by the function.
context-handle-type

Specifies the name of the type that takes the context_handle attribute.

Examples
void VoidFunc1(void);
void VoidFunc2([in, out] short s1);
typedef [context_handle] void * MY_CX_HNDL_TYPE;
void InitHandle([out] MY_CX_HNDL_TYPE * ppCxHndl);

Remarks

The base type void indicates a procedure with no arguments or a procedure that does not return a result
value.

The pointer type void *, which in C describes a generic pointer that can be cast to represent any pointer
type, is limited in MIDL to its use with the context_handle keyword.

See Also
base_types, context_handle, IDL

wchar_t
The wchar_t keyword designates a wide-character type. The wchar_t type is defined by MIDL as an
unsigned short (16-bit) data object.

The MIDL compiler allows redefinition of wchar_t, but only if it is consistent with the preceding definition.

The wide-character type is one of the predefined types of MIDL. The wide-character type can appear as a
type specifier in const declarations, typedef declarations, general declarations, and function declarators
(as a function-return-type specifier and as a parameter-type specifier). For the context in which type
specifiers appear, see IDL.

The string attribute can be applied to a pointer or array of type wchar_t.

Use the L character before a character or a string constant to designate the wide-character-type constant.

See Also
base_types, char, IDL

wire_marshal
typedef [wire_marshal(wire_type)] type-specifier userm-type;

unsigned long __RPC_USER < userm_type >_UserSize(
unsigned long __RPC_FAR *pFlags,
unsigned long StartingSize,
< userm_type > __RPC_FAR * pUser_typeObject);

unsigned char __RPC_FAR * __RPC_USER < userm_type >_UserMarshal(
unsigned long __RPC_FAR * pFlags,
unsigned char __RPC_FAR * Buffer,
< userm_type > __RPC_FAR * pUser_typeObject);

unsigned char __RPC_FAR * __RPC_USER < userm_type >_UserUnmarshal(
unsigned long __RPC_FAR * pFlags,
unsigned char __RPC_FAR * Buffer,
< userm_type > __RPC_FAR * pUser_typeObject);

void __RPC_USER < userm_type >_UserFree(
unsigned long __RPC_FAR * pFlags,
< userm_type > __RPC_FAR * pUser_typeObject);

userm-type

Specifies the id of the user data type to be marshaled. It can be any type, as given by the type-
specifier,.as long as it has a well-defined size. The userm-type need not be remotable but must be a
type known to the MIDL compiler.

wire-type

Specifies the named transfer data type that is actually transferred between client and server. The
wire-type must be a MIDL base type, predefined type, or a type identifier of a remotable type.

pFlags

Specifies a pointer to a flag field (unsigned long). The high-order word specifies NDR data
representation flags as defined by DCE for floating point, big- or little-endian, and character
representation. The low-order word specifies a marshaling context flag. The exact layout of the flags
is described in The type_UserSize Function.

StartingSize

Specifies the current buffer size (offset) before sizing the object.
Buffer

Specifies the current buffer pointer.
pUser_typeObject

Specifies a pointer to an object of userm_type.

Example
typedef unsigned long _FOUR_BYTE_DATA;

 typedef struct _TWO_X_TWO_BYTE_DATA {
 unsigned short low;
 unsigned short high;

 } TWO_X_TWO_BYTE_DATA;

 typedef [wire_marshal(TWO_X_TWO_BYTE_DATA)] _FOUR_BYTE_DATA
FOUR_BYTE_DATA;
//Marshaling functions:
unsigned long __RPC_USER FOUR_BYTE_DATA_UserSize(
 ULONG __RPC_FAR * pulFlags,
 char __RPC_FAR * pBufferStart,
 FOUR_BYTE_DATA __RPC_FAR * pul
);//calculate size that converted data will
 // require in the buffer
unsigned long __RPC_USER FOUR_BYTE_DATA_UserMarshal(
 ULONG __RPC_FAR *pulFlags,
 char __RPC_FAR * pBufferStart,
 FOUR_BYTE_DATA __RPC_FAR * pul
);//copy FOUR_BYTE_DATA into buffer as
 //TWO_X_TWO_BYTE_DATA
unsigned long __RPC_USER FOUR_BYTE_DATA_UserUnmarshal(
 ULONG __RPC_FAR * pulFlags,
 char __RPC_FAR * pBufferStart,
 FOUR_BYTE_DATA __RPC_FAR * pul
);//recreate FOUR_BYTE_DATA from TWO_X_TWO_BYTE_DATA
 //in buffer
void __RPC_USER FOUR_BYTE_DATA_UserFree(
 ULONG __RPC_FAR * pulFlags,
 FOUR_BYTE_DATA __RPC_FAR * pul
);//nothing to do here as the engine frees the top
 //node and FOUR_BYTE_DATA is a flat data type.

Remarks

The wire_marshal attribute specifies a data type that will be used for transmission (the wire-type) instead
of an application-specific data type (the userm-type). Each userm-type has a one-to-one correspondence
with a wire-type that defines the wire representation of the type. You must supply routines to size the data
for marshaling, to marshal and unmarshal the data, and to free memory. Note that if there are embedded
types in your data that are also defined with wire_marshal or user_marshal, you need to manage the
servicing of those embedded types also. For more information on these routines, see The wire_marshal
Attribute.

The wire-type cannot be an interface pointer or a full pointer. The wire-type must have a well-defined
memory size. See Marshaling Rules for user_marshal and wire_marshal for details on how to marshal a
given wire-type.

The userm-type should not be an interface pointer because these can be marshaled directly. If the user
type is a full pointer, you must manage the aliasing yourself.

You cannot use the wire_marshal attribute with the allocate attribute, either directly or indirectly,
because the NDR engine does not control memory allocation for the transmitted type.

See Also
The wire_marshal Attribute, user_marshal, transmit_as, base_types

MIDL Compiler Errors and
Warnings

This section lists MIDL compiler error and warning messages.

An error or warning message sometimes specifies the name of one or more MIDL compiler mode
switches. The MIDL compiler accepts an IDL file when you use some mode switches but generates errors
for the same file when you do not use mode switches. For example, you can include ACF attributes in an
IDL file when you use the /app_config switch, but that IDL file will generate an error if you compile
without using the /app_config switch.

Command-line errors appear in the following format:

Command line error : MIDLnnnn : <error text>
[<additional error information>]

The additional-error information field provides context-specific information about the error. The information
in this field depends on the error message. For example, when an unresolved type-declaration error
occurs, the additional-information field displays the name of the type that could not be resolved.

Compile-time warnings appear in the following format:

<FileName>(line#) : warning MIDLnnnn :
<warning text>
[optional context information] :

Compile-time errors appear in the following format:

<FileName>(line#) : error MIDLnnnn :
<error text>
[optional context information] :

Optional context information refers to the context in which the error occurred. The MIDL compiler reports
this information to help you quickly find the error in the IDL file. Context information is generated when the
MIDL compiler discovers an error during semantic analysis of type and procedure signatures.

MIDL1000 : missing source file name
No input file has been specified in the MIDL compiler command line.

MIDL1001 : cannot open input file
The input file specified could not be opened.

MIDL1002 : error while reading input file
The system returned an error while reading the input file.

MIDL1003 : error returned by the C preprocessor
The preprocessor returned an error. The error message is directed to the output stream.

MIDL1004 : cannot execute C preprocessor
The operating system reported an error when it tried to spawn the preprocessor. With MS-DOS, this error
can occur when the argument list exceeds 128 bytes. You can reduce the size of the argument list by
using a response file.

MIDL1005 : cannot find C preprocessor

The MIDL compiler cannot locate the preprocessor in the specified path or in the path specified by the
PATH environment variable.

MIDL1006 : invalid C preprocessor executable
The specified preprocessor is not executable or has an invalid executable-file format.

MIDL1007 : switch specified more than once on command line
A switch has been redefined. The redefined switch is displayed after the error message.

MIDL1008 : unknown switch
An unknown switch has been specified on the command line.

MIDL1009 : unknown argument ignored
The MIDL compiler does not recognize the command-line argument as either a switch, a switch
argument, or a filename. The compiler discards the unknown argument and attempts to continue
processing.

MIDL1010 : switch not implemented
The switch is defined as part of the IDL compiler but is not implemented in Microsoft RPC.

MIDL1011 : argument(s) missing for switch
The switch expected an argument and the argument is not present. Check the syntax documentation for
the specified switch.

MIDL1012 : argument illegal for switch /
The argument supplied to the specified switch is illegal.

MIDL1013 : illegal syntax for switch
Several command-line switches require a space between the switch and the argument, while other
switches require no space between the switch and the argument. The specified command line violates the
defined syntax for that switch.

MIDL1014 : /no_cpp overrides /cpp_cmd and /cpp_opt
The cpp_opt command has been supplied along with the /no_cpp switch. The /no_cpp switch takes
precedence over the other switches.

MIDL1015 : /no_warn overrides warning-level switch
The no_warn option has been specified along with the warning-level switch W1, W2, or W3.
The /no_warn switch takes precedence over all other warning-level switches.

MIDL1016 : cannot create intermediate file
The system returned an error when the compiler tried to create an intermediate file.

MIDL1018 : out of system file handles
The MIDL compiler ran out of file handles while opening a file. This error can occur if too many import files
are open and the compiler tries to open an IDL file or an intermediate file.

MIDL1020 : cannot open response file
The specified response file could not be opened. The file probably does not exist.

MIDL1021 : illegal character(s) found in response file
A non-printable character has been detected in the response file. The response file should contain valid
MIDL command-line switches and arguments.

MIDL1023 : nested invocation of response files is illegal
A response file cannot contain the @ command that directs the MIDL compiler to process another
response file. Although there is no limit on the number of response files, response files cannot be nested.

MIDL2000 : must specify /c_ext for abstract declarators
Abstract declarators represent a Microsoft extension to RPC and are not defined in DCE RPC. To compile
a file that includes abstract declarators, you must use the /c_ext switch.

MIDL2001 : instantiation of data is illegal; you must use "extern" or "static"
Declaration and initialization in the IDL file are not compatible with DCE RPC. This feature is a Microsoft
extension and is not available when you compile in DCE-compatibility (osf) mode.

MIDL2002 : compiler stack overflow
The compiler ran out of stack space while processing the IDL file. This problem can occur when the
compiler is processing a complex declaration or expression. To solve the problem, simplify the complex
declaration or expression.

MIDL2003 : redefinition
This error message can appear under the following circumstances: a type has been redefined; a
procedure prototype has been redefined; a member of a structure or union of the same name already
exists; a parameter of the same name already exists in the prototype.

MIDL2004 : [auto_handle] binding will be used for procedure
No handle type has been defined as the default handle type. The compiler assumes that an auto handle
will be used as the binding handle for the specified procedure.

MIDL2005 : out of memory
The compiler ran out of memory during compilation. Reduce the size or complexity of the IDL file or
allocate more memory to the process.

MIDL2006 : recursive definition
A structure or union has been recursively defined. This error can occur when a pointer specification in a
nested structure definition is missed.

MIDL2007 : import ignored; file already imported
Importing an IDL file is an idempotent operation. All but the first import operation are ignored.

MIDL2008 : sparse enums require /c_ext or /ms_ext switch
Assigning to enumeration constants is not compatible with DCE RPC. To use the extensions to RPC that
permit assigning values to enumeration constants, use the /c_ext or /ms_ext switch.

MIDL2009 : undefined symbol
An undefined symbol has been used in an expression. This error can occur when you use an enum label
that is not defined.

MIDL2010 : type used in ACF file not defined in IDL file
An undefined type is being used.

MIDL2011 : unresolved type declaration
The type reported in the additional-information field has not been defined elsewhere in the IDL file.

MIDL2012 : use of wide-character constants requires /ms_ext or /c_ext
Wide-character constants are a Microsoft extension to DCE IDL. To enable the use of the data type
wchar_t, use the MIDL compiler switch /ms_ext or /c_ext.

MIDL2013 : use of wide-character strings requires /ms_ext or /c_ext
Wide-character string constants are a Microsoft extension to DCE IDL. To enable the use of the data type
wchar_t, use the MIDL compiler switch /ms_ext or /c_ext.

MIDL2014 : inconsistent redefinition of type wchar_t
The type wchar_t has been redefined as a type that is not equivalent to unsigned short.

MIDL2017 : syntax error
The compiler detected a syntax error at the specified line.

MIDL2018 : cannot recover from earlier syntax errors; aborting compilation
The MIDL compiler automatically tries to recover from syntax errors by adding or removing syntactic
elements. This message indicates that despite these attempts to recover, the compiler detected too many
errors. Correct the specified error(s) and recompile.

MIDL2019 : unknown pragma option
The specified C pragma is not supported in MIDL. Remove the pragma from the IDL file.

MIDL2020 : feature not implemented
The MIDL feature, although part of the language definition, is not implemented in Microsoft RPC and is
not supported by the MIDL compiler. For example, the following language features are not implemented:
bitset, pipe, and the international character type. The unimplemented language feature appears in the
additional-information field of the error message.

MIDL2021 : type not implemented
The specified data type, although a legal MIDL keyword, is not implemented in Microsoft RPC.

MIDL2022 : non-pointer used in a dereference operation
A data type that is not a pointer has been associated with pointer operations. You cannot access the
object through the specified non-pointer.

MIDL2023 : expression has a divide by zero
The constant expression contains a divide by zero.

MIDL2024 : expression uses incompatible types
The left and right sides of the operator in an expression are of incompatible types.

MIDL2025 : non-array expression uses index operator
The expression uses the array-indexing operation on a data item that is not of the array type.

MIDL2026 : left-hand side of expression does not evaluate to struct/union/enum
The direct or indirect reference operator "." or "->" has been applied to a data object that is not a
structure, union, or enum. You cannot obtain a direct or indirect reference using the specified object.

MIDL2027 : constant expression expected
A constant expression was expected in the syntax. For example, array bounds require a constant
expression. The compiler issues this error message when the array bound is defined with a variable or
undefined symbol.

MIDL2028 : expression cannot be evaluated at compile time
The compiler cannot evaluate an expression at compile time.

MIDL2029 : expression not implemented
A feature that was supported in previous releases of the MIDL compiler is not supported in the version of
the compiler supplied with Microsoft RPC. Remove the specified feature.

MIDL2030 : no [pointer_default] specified, assuming [unique] for all unattributed pointers
The MIDL compiler offers three different default cases for pointers that do not have pointer attributes.
Function parameters that are top-level pointers default to ref pointers. Pointers embedded in structures
and pointers to other pointers (not top-level pointers) default to the type specified by the pointer_default
attribute. When no pointer_default attribute is supplied, these non-top-level pointers default to unique
pointers. This error message indicates the last case: no pointer_default attribute is supplied and there is
at least one non-top-level pointer that will be treated as a unique pointer.

MIDL2031 : [out] only parameter cannot be a pointer to an open structure

An out-only parameter has been used as a pointer to a structure, known as an open structure, whose
transmitted range and size are determined at run time. The server stub does not know how much space
to allocate for an open structure. Use a pointer to a pointer to the open structure and ensure that the
server application allocates sufficient space for it.

MIDL2032 : [out] only parameter cannot be an unsized string
An array with the string attribute has been declared as an out-only parameter without any size
specification. The server stub needs size information to allocate memory for the string. You can remove
the string attribute and add the size_is attribute, or you can change the parameter to an in, out
parameter.

MIDL2033 : [out] parameter is not a pointer
All out parameters must be pointers, in keeping with the call-by-value convention of the C programming
language. The out directional parameter indicates that the server transmits a value to the client. With the
call-by-value convention, the server can transmit data to the client only if the function argument is a
pointer.

MIDL2034 : open structure cannot be a parameter
A structure or union is truncated when the last element of that structure or union is a conformant array.

MIDL2035 : [out] context handle/generic handle must be specified as a pointer to that handle type
A context-handle or user-defined handle parameter with the out directional attribute must be a pointer to a
pointer.

MIDL2036 : [context_handle] must not derive from a type that has the [transmit_as] attribute
Context handles must be transmitted as context-handle types. They cannot be transmitted as other types.

MIDL2037 : cannot specify a variable number of arguments to a remote procedure
Remote procedure calls that specify the number of variable arguments at compile time are not compatible
with the DCE RPC definition. You cannot use a variable number of arguments in Microsoft RPC.

MIDL2038 : named parameter cannot be "void"
A parameter with the base type void is specified with a name.

MIDL2040 : cannot use [comm_status] on both a parameter and a return type
Both the procedure and one of its parameters have the comm_status attribute. The comm_status
attribute specifies that only one data object can be of type error_status_t at a time.

MIDL2041 : [local] attribute on a procedure requires /ms_ext
A procedure uses the local attribute as a function attribute, which is not compatible with DCE RPC. To
enable the Microsoft RPC extensions, use the MIDL compiler switch /ms_ext.

MIDL2042 : field deriving from a conformant array must be the last member of the structure
The structure contains a conformant array that is not the last element in the structure. The conformant
array must appear as the last structure element.

MIDL2043 : duplicate [case] label
A duplicate case label has been specified. The duplicate label is displayed.

MIDL2044 : no [default] case specified for discriminated union
A discriminated union has been specified without a default case.

MIDL2045 : attribute expression cannot be resolved
The expression associated with the attribute cannot be resolved. This error usually occurs when a
variable that appears in the expression is not defined. For example, the error can occur when the variable
s is not defined and is used by the attribute size_is(s).

MIDL2046 : attribute expression must be of integral type

The specified attribute variable or expression must be an integral type. This error occurs when the
attribute-expression type does not resolve to an integer.

MIDL2047 : [byte_count] requires /ms_ext
The byte_count attribute represents an extension to DCE RPC. To enable the Microsoft RPC extensions,
use the MIDL compiler switch /ms_ext.

MIDL2048 : [byte_count] can be applied only to out parameters of pointer type
The byte_count attribute can only be applied to out parameters, and all out parameters must be pointer
types.

MIDL2049 : [byte_count] cannot be specified on a pointer to a conformant array or structure
The byte_count attribute cannot be applied to a conformant array or structure.

MIDL2050 : parameter specifying the byte count is not [in]
The value associated with the byte_count must be transmitted from the client to the server; it must be an
in parameter. The byte_count parameter does not need to be an in, out parameter.

MIDL2051 : parameter specifying the byte count is not an integral type
The value associated with the byte count must be the integer type small, short, or long.

MIDL2052 : [byte_count] cannot be specified on a parameter with size attributes
The byte_count attribute cannot be used with other size attributes such as size_is or length_is.

MIDL2053 : [case] expression is not constant
The expression specified for the case label is not a constant.

MIDL2054 : [case] expression is not of integral type
The expression specified for the case label is not an integer type.

MIDL2055 : specifying [context handle] on a type other than void * requires /ms_ext
For DCE RPC compatibility, the context handle must be a pointer of type void *. To use the Microsoft
RPC extensions that allow context handles to be associated with types other than void *, use the MIDL
compiler switch /ms_ext.

MIDL2056 : cannot specify more than one parameter with each of comm_status/fault_status
The comm_status attribute may only appear once, and the fault_status attribute may only appear once
per procedure.

MIDL2057 : error_status_t parameter must be an [out] only pointer parameter
The error-code type error_status_t is transmitted from server to client and therefore must be specified as
an out parameter. Due to the constraints in the C programming language, all out parameters must be
pointers.

MIDL2058 : endpoint syntax error
The endpoint syntax is incorrect.

MIDL2059 : inapplicable attribute
The specified attribute cannot be applied in this construct. For example, the string attribute applies to
char arrays or char pointers and cannot be applied to a structure that consists of two short integers:

typedef [string] struct foo {
 short x;
 short y;
};

MIDL2060 : [allocate] requires /ms_ext
The allocate attribute represents a Microsoft extension that is not defined as part of DCE RPC. To enable

the Microsoft extensions, use the /ms_ext switch.

MIDL2061 : invalid [allocate] mode
An invalid mode for the allocate attribute construct has been specified. The four valid modes are
single_node, all_nodes, on_null, and always.

MIDL2062 : length attributes cannot be applied with string attribute
When the string attribute is used, the generated stub files call the strlen function to determine the string
length. Don't use the length attribute and the string attribute for the same variable.

MIDL2063 : [last_is] and [length_is] cannot be specified at the same time
Both last_is and length_is have been specified for the same array. These attributes are related as
follows: length = last - first + 1. Because each value can be derived from the other, don't specify both.

MIDL2064 : [max_is] and [size_is] cannot be specified at the same time
Both max_is and size_is have been specified for the same array. These attributes are related as follows:
max = size + 1. Because each value can be derived from the other, don't specify both.

MIDL2065 : no [switch_is] attribute specified at use of union
No discriminant has been specified for the union. The switch_is attribute indicates the discriminant used
to select among the union fields.

MIDL2066 : no [uuid] specified for interface
No UUID has been specified for the interface.

MIDL2067 : cannot specify both [local] and [uuid] as interface attributes
The local and UUID keywords cannot be used at the same time, except on [object] interfaces.

MIDL2068 : type mismatch between length and size attribute expressions
The length and size attribute expressions must be of the same types. For example, this warning is issued
when the attribute variable for the size_is expression is of type unsigned long and the attribute variable
for the length_is expression is of type long.

MIDL2069 : [string] attribute must be specified "byte", "char", or "wchar_t" array or pointer
A string attribute cannot be applied to a pointer or array whose base type is not a byte, char, or struct in
which the members are all of the byte or char type.

MIDL2070 : mismatch between the type of the [switch_is] expression and the switch type of the
union
If the union switch_type is not specified, the switch type is the same type as the switch_is field.

MIDL2071 : [transmit_as] cannot be applied to a type that derives from a context handle
Context handles cannot be transmitted as other types.

MIDL2072 : [transmit_as] must specify a transmissible type
The specified transmit_as type derives from a type that cannot be transmitted by Microsoft RPC, such as
void, void *, or int. Use a defined RPC base type; in the case of int, add size specifiers like small, short,
or long to qualify the int.

MIDL2073 : transmitted type must not be a pointer or derive from a pointer
The transmitted type cannot be a pointer or derive from a pointer.

MIDL2074 : presented type must not derive from a conformant/varying array, its pointer
equivalent, or a conformant/varying structure
The type to which transmit_as has been applied cannot derive from a conformant array or structure (an
array or structure whose size is determined at run time).

MIDL2075 : [uuid] format is incorrect

The UUID format does not conform to specification. The UUID must be a string that consists of five
sequences of hexadecimal digits of length 8, 4, 4, 4, and 12 digits. "12345678-1234-ABCD-EF01-
28A49C28F17D" is a valid UUID. Use the function UuidCreate or a utility to generate a valid UUID.

MIDL2076 : uuid is not a hex number
The UUID specified for the interface contains characters that are invalid in a hexadecimal number
representation. The characters 0 through 9 and A through F are valid in a hexadecimal representation.

MIDL2077 : interface name specified in the ACF file does not match that specified in the IDL file
In this compiler mode, the name that follows the interface keyword in the ACF must be the same as the
name that follows the interface keyword in the IDL file. The interface names in the IDL and ACF files can
be different when you compile with the MIDL compiler switch /acf.

MIDL2078 : conflicting attributes
Conflicting attributes have been specified. This error often occurs when two attributes are mutually
exclusive. For example, the attributes code and nocode cannot be used at the same time.

MIDL2080 : [local] procedure cannot be specified in ACF file
A local procedure has been specified in the ACF. The local procedure can only be specified in the IDL file.

MIDL2081 : specified type is not defined as a handle
The type specified in the implicit_handle attribute is not defined as a handle type. Change the type
definition or the type name specified by the attribute.

MIDL2082 : procedure undefined
An attribute has been applied to a procedure in the ACF and that procedure is not defined in the IDL file.

MIDL2083 : this parameter does not exist in the IDL file
A parameter specified in the ACF does not exist in the definition in the IDL file. All parameters, functions,
and type definitions that appear in the ACF must correspond to parameters, functions, and types
previously defined in the IDL file.

MIDL2084 : this array bounds construct is not supported
MIDL currently supports array-bounds constructs of the form Array[Lower .. Upper] only when the
constant that specifies the lower bound of the array resolves to the value zero.

MIDL2085 : array bound specification is illegal
The user specification of array bounds for the fixed-size array is illegal. For example:

typedef short Array[-1]

MIDL2087 : pointee / array does not derive any size
A conformant array has been specified without any size specification. You can specify the size with the
max_is or size_is attribute.

MIDL2088 : badly formed character constant
The end-of-line character is not allowed in character constants.

MIDL2089 : end of file found in comment
The end-of-file character has been encountered in a comment.

MIDL2090 : end of file found in string
The end-of-file character has been encountered in a string.

MIDL2091 : identifier length exceeds 31 characters
Identifiers are limited to 31 alphanumeric characters. Identifier names longer than 31 characters are
truncated.

MIDL2092 : end of line found in string
The end-of-line character has been encountered in the string. Verify that you have included the double-
quote character that terminates the string.

MIDL2093 : string constant exceeds limit of 255 characters
The string exceeded the maximum allowable length of 255 characters.

MIDL2094 : constant too big
The constant is too large to be represented internally.

MIDL2095 : error in opening file
The operating system reported an error while trying to open an output file. This error can be caused by a
name that is too long for the file system or by a duplicate filename.

MIDL2096 : [out] only parameter must not derive from a top-level [unique] or [ptr] pointer/array
A unique pointer cannot be an out-only parameter. By definition, a unique pointer can change from null to
non-null. No information about the out-only parameter is passed from client to server.

MIDL2097 : attribute is not applicable to this non-rpcable union
The switch_is and switch_type attributes apply to a union that is transmitted as part of a remote
procedure call.

MIDL2098 : expression used for a size attribute must not derive from an [out] only parameter
The value of an out-only parameter is not transmitted to the server and cannot be used to determine the
length or size of the in parameter.

MIDL2099 : expression used for a length attribute for an [in] parameter cannot derive from an [out]
only parameter
The value of an out-only parameter is not transmitted to the server and cannot be used to determine the
length or size of the in parameter.

MIDL2100 : use of "int" needs /c_ext
MIDL is a strongly typed language. All parameters transmitted over the network must be derived from one
of the MIDL base types. The type int is not defined as part of MIDL. Transmitted data must include a size
specifier: small, short, or long. Data that is not transmitted over the network can be included in an
interface; use the /c_ext switch.

MIDL2101 : struct/union field must not be void
Fields in a structure or union must be declared to be of a specific base type supported by MIDL or a type
that is derived from the base types. Void types are not allowed in remote operations.

MIDL2102 : array element must not be void
An array element cannot be void.

MIDL2103 : use of type qualifiers and/or modifiers needs /c_ext
Type modifiers such as _cdecl and _far can be compiled only if you specify the /c_ext switch.

MIDL2104 : struct/union field must not derive from a function
The fields of a structure or union must be MIDL base types or types that are derived from these base
types. Functions are not legal in structure or union fields.

MIDL2105 : array element must not be a function
An array element cannot be a function.

MIDL2106 : parameter must not be a function
The parameter to a remote procedure must be a variable of a specified type. A function cannot be a
parameter to the remote procedure.

MIDL2107 : struct/union with bit fields needs /c_ext
You must specify the MIDL compiler switch /c_ext to allow bit fields on data that is not transmitted in a
remote procedure call.

MIDL2108 : bit field specification on a type other that "int" is a non ANSI-compatible extension
The ANSI C programming language specification does not allow bit fields to be applied to non-integer
types.

MIDL2109 : bit field specification can be applied only to simple, integral types
The ANSI C programming language specification does not allow bit fields to be applied to non-integer
types.

MIDL2110 : struct/union field must not derive from handle_t or a context_handle
Context handles cannot be transmitted as part of another structure. They must be transmitted as context
handles.

MIDL2111 : array element must not derive from handle_t or a context handle
Context handles cannot be transmitted as part of an array.

MIDL2112 : this specification of union needs /c_ext
A union that appears in the interface definition must be associated with the discriminant or declared as
local. Data that is not transmitted over the network can be implicitly declared as local when you use the
/c_ext switch.

MIDL2113 : parameter deriving from an "int" must have size specifier "small", "short", or "long"
with the "int"
The type int is not a valid MIDL type unless it is accompanied by a size specification. Use one of the size
specifiers small, short, or long.

MIDL2114 : type of the parameter cannot derive from void or void*
MIDL is a strongly typed language. All parameters transmitted over the network must be derived from one
of the MIDL base types. MIDL does not support void as a base type. You must change the declaration to
a valid MIDL type.

MIDL2115 : parameter deriving from a struct/union containing bit fields is not supported
Bit fields are not defined as a valid data type by DCE RPC.

MIDL2116 : use of a parameter deriving from a type containing type-modifiers/type-qualifiers
needs /c_ext
Such keywords as far, near, const, and volatile can appear in the IDL file only when you activate the
/c_ext extension to the MIDL compiler.

MIDL2117 : parameter must not derive from a pointer to a function
The RPC run-time libraries transmit a pointer and its associated data between client and server. Pointers
to functions cannot be transmitted as parameters because the function cannot be transmitted over the
network.

MIDL2118 : parameter must not derive from a non-rpcable union
The union must be associated with a discriminant. Use the switch_is and switch_type attributes.

MIDL2119 : return type derives from an "int". You must use size specifiers with the "int"
The type int is not a valid MIDL type unless it is accompanied by a size specification. Use one of the size
specifiers small, short, or long.

MIDL2120 : return type must not derive from a void pointer
MIDL is a strongly typed language. All parameters transmitted over the network must be derived from one
of the MIDL base types. Void types are not defined as part of MIDL. You must change the declaration to a
valid MIDL type.

MIDL2121 : return type must not derive from a struct/union containing bit-fields
Bit fields are not defined as a valid data type by DCE RPC.

MIDL2122 : return type must not derive from a non-rpcable union
The union must be associated with a discriminant. Use the switch_is and switch_type attributes.

MIDL2123 : return type must not derive from a pointer to a function
The RPC run-time libraries transmit a pointer and its associated data between client and server. Pointers
to functions cannot be transmitted as parameters because RPC does not define a method to transmit the
associated function over the network.

MIDL2124 : compound initializers are not supported
DCE RPC supports simple initialization only. The structure or array cannot be initialized in the IDL file.

MIDL2125 : ACF attributes in the IDL file need the /app_config switch
A Microsoft extension allows you to specify ACF attributes in the IDL file. Use the /app_config switch to
activate this extension.

MIDL2126 : single line comment needs /ms_ext or /c_ext
Single-line comments that use two slash characters (//) represent a Microsoft extension to DCE RPC. You
must use one of the mode-extension switches for a single-line comment.

MIDL2127 : [version] format is incorrect
The interface version number in the interface header must be specified in the format major.minor, where
each number can range from 0 to 65535.

MIDL2128 : "signed" needs /ms_ext or /c_ext
The use of the signed keyword is a Microsoft extension to DCE RPC. You must use one of the mode-
extension switches to activate this extension.

MIDL2129 : mismatch in assignment type
The type of the variable does not match the type of the value that is assigned to the variable.

MIDL2130 : declaration must be of the form: const <type><declarator> = <initializing expression>
The declaration is not compatible with DCE RPC syntax. Use the /ms_ext or /c_ext MIDL compiler mode
switch.

MIDL2131 : declaration must have "const"
Declarations in the IDL file must be constant expressions that use the keyword const. For example:

const short x = 2;

MIDL2132 : struct/union/enum must not be defined in a parameter type specification
The structure, union, or enumerated type must be explicitly specified outside of the function prototype.

MIDL2133 : [allocate] attribute must be applied only on non-void pointer types
The allocate attribute is designed for complex pointer-based data structures. When the allocate attribute
is specified, the stub file traverses the data structure to compute the total size of all objects accessible
from the pointer and all other pointers in the data structure. Change the type to a non-void pointer type or
remove the allocate attribute and use another method to determine its allocation size, such as the sizeof
operator.

MIDL2134 : array or equivalent pointer construct cannot derive from a non-encapsulated union
Each union must be associated with a discriminant. Arrays of unions are not permitted because they do
not provide the associated discriminant. Arrays of structures are permitted because each structure
consists of the union and its discriminant.

MIDL2135 : field must not derive from an error_status_t type

The error_status_t type can only be used as a parameter or a return type. It cannot be embedded in the
field of a structure or union.

MIDL2136 : union has at least one arm without a case label
The union declaration does not match the required MIDL syntax for the union. Each union arm requires a
case label or default label that selects that union arm.

MIDL2137 : a parameter or a return value must not derive from a type which has [ignore] applied
to it
The ignore attribute is a field attribute that can only be applied to fields, such as fields of structures and
arrays. The ignore attribute indicates that the stub should not dereference the pointer during transmission
and is not allowed when it conflicts with other attributes that must be dereferenced, such as out
parameters and function return values.

MIDL2138 : pointer already has a pointer-attribute applied to it
Only one of the pointer attributes, ref, unique, or ptr, can be applied to a pointer.

MIDL2139 : field/parameter must not derive from a structure that is recursive through a ref pointer
By definition, a reference pointer cannot be set to NULL. A recursive data structure defined with a
reference pointer has no null elements and by convention is non-terminating. Use a unique pointer
attribute to allow the data structure to specify a null element or redefine the data structure as a non-
recursive data structure.

MIDL2140 : use of field deriving from a void pointer needs /c_ext
The type void * and other types and type qualifiers that are not supported by DCE IDL are only allowed in
the IDL file when you use the MIDL compiler switch /c_ext. Redefine the pointer type or recompile using
the /c_ext switch.

MIDL2141 : use of this attribute needs /ms_ext
This language feature is a Microsoft extension to DCE IDL. You must specify the MIDL compiler switch
/ms_ext.

MIDL2142 : use of wchar_t needs /ms_ext or /c_ext
The wide-character type represents an extension to DCE IDL. The MIDL compiler accepts the wide-
character type only when you specify the /ms_ext or /c_ext switch.

MIDL2143 : unnamed fields need /ms_ext or /c_ext
DCE IDL does not support the use of unnamed structures or unions embedded in other structures or
unions. In DCE IDL, all such embedded fields must be named. To enable this Microsoft extension to IDL,
supply the MIDL compiler switch /ms_ext or /c_ext.

MIDL2144 : unnamed fields can derive only from struct/union types
The Microsoft extension to the DCE IDL that supports unnamed fields applies only to structures and
unions. You must assign a name to the field or redefine the field to comply with this restriction.

MIDL2145 : field of a union cannot derive from a varying/conformant array or its pointer equivalent
The conformant array cannot appear alone in the union but must be accompanied by the value that
specifies the size of the array. Instead of using the array as the union arm, use a structure that consists of
the conformant array and the identifier that specifies the size.

MIDL2146 : no [pointer_default] attribute specified, assuming [ptr] for all unattributed pointers in
interface
The DCE IDL implementation specifies that all pointers in each IDL file must be associated with pointer
attributes. When an explicit pointer attribute is not assigned to the parameter or pointer type and no
pointer_default attribute is specified in the IDL file, the full pointer attribute ptr is associated with the
pointer. You can change the pointer attributes by using explicit pointer attributes, by specifying a
pointer_default attribute, or by specifying the /ms_ext switch to change the default for unattributed
pointers to unique.

MIDL2147 : initializing expression must resolve to a constant expression
The use of initializing expressions is limited to constant expressions in all MIDL compiler modes. The
expression must be resolvable at compile time. Specify a literal constant, or an expression that resolves
to a constant, rather than a variable.

MIDL2148 : attribute expression must be of type integer, char, byte, boolean or enum
The specified type does not resolve to a valid switch type. Use an integer, character, byte, boolean, or
enum type, or a type that is derived from one of these types.

MIDL2149 : illegal constant
The specified constant is out of the valid range for the specified type.

MIDL2150 : attribute not implemented; ignored
The attribute specified is not implemented in this release of Microsoft RPC. The MIDL compiler continues
processing the IDL file as if the attribute were not present.

MIDL2151 : return value must not derive from a [ref] pointer
Function return values that are defined to be pointer types must be specified as unique or full pointers.
Reference pointers cannot be used.

MIDL2152 : attribute expression must be a variable name or a pointer dereference expression in
this mode. You must specify the /ms_ext switch
The DCE IDL compiler requires the size associated with the size_is attribute to be specified by a variable
or pointer variable. To enable the Microsoft extension that allows the size_is attribute to be defined by a
constant expression, use the /ms_ext switch.

MIDL2153 : parameter must not derive from a recursive non-encapsulated union
A union must include a discriminant, so a union cannot have another union as an element. A union can be
embedded in another union only when it is part of a structure that includes the discriminant.

MIDL2154 : binding-handle parameter cannot be [out] only
The handle parameter identified by the MIDL compiler as the binding handle for this operation must be an
in parameter. Out-only parameters are undefined on the client stub, and the binding handle must be
defined on the client.

MIDL2155 : pointer to a handle cannot be [unique] or [ptr]
The unique and full pointer attributes allow the value NULL. The binding handle cannot be null. Use the
ref attribute to derive the binding-handle parameter from reference pointers.

MIDL2156 : parameter that is not a binding handle must not derive from handle_t
The primitive handle type handle_t is not a valid data type that is transmitted over the network. Change
the parameter type to a type other than handle_t or remove the parameter.

MIDL2157 : unexpected end of file found
The MIDL compiler found the end of the file before it was able to successfully resolve all syntactical
elements of the file. Verify that the terminating right brace character (}) is present at the end of the file, or
check the syntax.

MIDL2158 : type deriving from handle_t must not have [transmit_as] applied to it
The primitive handle type handle_t is not transmitted over the network.

MIDL2159 : [context_handle] must not be applied to a type that has [handle] applied to it
The context_handle and handle attributes cannot be applied to the same type.

MIDL2160 : [handle] must not be specified on a type deriving from void or void *
A type specified with the handle attribute can be transmitted over the network, but the type void * is not a
transmissible type. The handle type must resolve to a type that derives from the valid base types.

MIDL2161 : parameter must have either [in], [out] or [in,out] in this mode. You must specify
/ms_ext or /c_ext
The DCE IDL compiler requires all parameters to have explicit directional parameters. To use the
Microsoft extensions to DCE IDL, where you can omit explicit directional attributes, use the MIDL compiler
switch /ms_ext or /c_ext.

MIDL2162 : [transmit_as] must not be specified on void type
The transmit_as attribute applies only to pointer types. Use the type void * in place of void.

MIDL2163 : void must be specified on the first and only parameter specification
The keyword void incorrectly appears with other function parameters. To specify a function without
parameters, the keyword void must be the only element of the parameter list, as in the following example:

void Foo(void)

MIDL2164 : [switch_is] must be specified only on a type deriving from a non-encapsulated union
The switch_is keyword is incorrectly applied. It can only be used with non-encapsulated union types. For
more information, see the syntax section in the reference entry for non-encapsulated unions.

MIDL2165 : stringable structures are not implemented in this version
DCE IDL allows the attribute string to apply to a structure whose elements consist only of characters,
bytes, or types that resolve to characters or bytes. This functionality is not supported in Microsoft RPC.
The string attribute cannot be applied to the structure as a whole; it can be applied to each individual
array.

MIDL2166 : switch type can only be integral, char, byte, boolean or enum
The specified type does not resolve to a valid switch type. Use an integer, character, byte, boolean, or
enum type, or a type that is derived from one of these types.

MIDL2167 : [handle] must not be specified on a type deriving from handle_t
A handle type must be defined using one and only one of the handle types or attributes. Use the primitive
type handle_t or the attribute handle, but not both. The user-defined handle type must be transmissible,
but the handle_t type is not transmitted on the network.

MIDL2168 : parameter deriving from handle_t must not be an [out] parameter
A handle of the primitive type handle_t is meaningful only to the side of the application in which it is
defined. The type handle_t is not transmitted on the network.

MIDL2169 : expression specifying size or length attributes derives from [unique] or [ptr] pointer
dereference
Although the unique and full pointer attributes allow pointers to have null values, the expression that
defines the size or length attribute must never have a null value. When pointers are used, MIDL
constrains expressions to ref pointers.

MIDL2170 : "cpp_quote" requires /ms_ext
The cpp_quote attribute is a Microsoft extension to DCE IDL. Use the MIDL compiler switch /ms_ext.

MIDL2171 : quoted uuid requires /ms_ext
The ability to specify a UUID value within quotation marks is a Microsoft extension to DCE IDL. Use the
MIDL compiler switch /ms_ext.

MIDL2172 : return type cannot derive from a non-encapsulated union
The non-encapsulated union cannot be used as a function return type. To return the union type, specify
the union type as an out or in, out parameter.

MIDL2173 : return type cannot derive from a conformant structure
The size of the return type must be a constant. You cannot specify as a return type a structure that
contains a conformant array even when the structure also includes its size specifier. To return the

conformant structure, specify the structure as an out or in, out parameter.

MIDL2174 : [transmit_as] must not be applied to a type deriving from a generic handle
In this release, the handle and transmit_as attributes cannot be combined on the same type.

MIDL2175 : [handle] must not be applied to a type that has [transmit_as] applied to it
In this release, the handle and transmit_as attributes cannot be combined on the same type.

MIDL2176 : type specified for the const declaration is invalid
Const declarations are limited to integer, character, wide-character, string, and boolean types.

MIDL2177 : operand to the sizeof operator is not supported
The MIDL compiler supports the sizeof operation for simple types only.

MIDL2178 : this name already used as an const identifier name
The identifier has previously been used to identify a constant in a const declaration. Change the name of
one of the identifiers so that the identifiers are unique.

MIDL2179 : inconsistent redefinition of type error_status_t
The type error_status_t must resolve to the type unsigned long. Other type definitions cannot be used.

MIDL2180 : [case] value out of range of switch type
The value associated with the switch statement case is out of range for the specified switch type. For
example, this error occurs when a long integer value is used in the case statement for a short integer
type.

MIDL2181 : parameter deriving from wchar_t needs /ms_ext
The wide-character type wchar_t is a Microsoft extension to DCE IDL. Use the MIDL compiler switch
/ms_ext.

MIDL2182 : this interface has only callbacks
Callbacks are valid only in the context of a remote procedure call. The interface must include at least one
function prototype for a remote procedure call that does not include the callback attribute.

MIDL2183 : redundantly specified attribute; ignored
The specified attribute has been applied more than once. Multiple instances of the same attribute are
ignored.

MIDL2184 : context handle type used for an implicit handle
A type that was defined using the context_handle attribute has been specified as the handle type in an
implicit_handle attribute. The attributes cannot be combined in this way.

MIDL2185 : conflicting options specified for [allocate]
The options specified for the ACF attribute allocate represent conflicting directives. For example, specify
either the option all_nodes or the option single_node, but not both.

MIDL2186 : error while writing to file
An error occurred while writing to the file. This condition can be caused by errors relating to disk space,
file handles, file-access restrictions, and hardware failures.

MIDL2187 : no switch type found at definition of union, using the [switch_is] type
The union definition does not include an explicit switch_type attribute. The type of the variable specified
by the switch_is attribute is used as the switch type.

MIDL2188 : semantic check incomplete due to previous errors
The MIDL compiler makes two passes over the input file(s) to resolve any forward declarations. Due to
errors encountered during the first pass, checking for the second pass has not been performed.
Unreported errors relating to forward declarations may still be present in the file.

MIDL2189 : handle parameter or return type is not supported on a [callback] procedure
A callback procedure occurs in the context of a call from a client to the server and uses the same binding
handle as the original call. Explicit binding-handle parameters or return types are not permitted in callback
functions.

MIDL2192 : [context_handle] must not derive from handle_t
The three handle characteristics ¾ the type handle_t, the attribute handle, and the attribute
context_handle ¾ are mutually exclusive. Only one can be applied to a type or parameter at a time.

MIDL2193 : array size exceeds 65536 bytes
On some Microsoft platforms, the maximum transmissible data size is 64K. Redesign your application so
that all transmitted data fits within the maximum transmissible size.

MIDL2194 : field of a non-encapsulated union cannot be another non-encapsulated union
Unions that are transmitted as part of a remote procedure call require an associated data item, the
discriminant, that selects the union arm. Unions nested in other unions do not offer a discriminant; as a
result, they cannot be transmitted in this form. Create a structure that consists of the union and its
discriminant.

MIDL2195 : pointer attribute(s) applied on an embedded array; ignored
A pointer attribute can be applied to an array only when the array is a top-level parameter. Other pointer
attributes applied to arrays embedded in other data structures are ignored.

MIDL2196 : [allocate] is illegal on a type that has [transmit_as] applied to it
The transmit_as and allocate attributes cannot both be applied to the same type. The transmit_as
attribute distinguishes between presented and transmitted types, while the allocate attribute assumes
that the presented type is the same as the transmitted type.

MIDL2198 : [implicit_handle] type undefined; assuming primitive handle
The handle type specified in the ACF is not defined in the IDL file. The MIDL compiler assumes that the
handle type resolves to the primitive handle type handle_t. Add the handle attribute to the type definition
if you want the handle to behave like a user-defined, or generic, handle.

MIDL2199 : array element must not derive from error_status_t
In this release of Microsoft RPC, the type error_status_t can only appear as a parameter or a return
type. It cannot appear in arrays.

MIDL2200 : [allocate] illegal on a type deriving from a primitive/generic/context handle
By design, the ACF attribute allocate cannot be applied to handle types.

MIDL2201 : transmitted or presented type must not derive from error_status_t
In this release of Microsoft RPC, the type error_status_t cannot be used with the transmit_as attribute.

MIDL2202 : discriminant of a union must not derive from a field with [ignore] applied to it
A union used in a remote procedure call must be associated with another data item, called the
discriminant, that selects the union arm. The discriminant must be transmitted. The ignore attribute
cannot be applied to the union discriminant.

MIDL2203 : [nocode] must be specified with "/server none" in this mode
Some DCE IDL compilers generate an error when the nocode attribute is applied to a procedure in an
interface for which server stub files are being generated. Because the server must support all operations,
nocode must not be applied to a procedure in this mode or you must use the MIDL compiler switch
/server none to explicitly specify that no server routines are to be generated.

MIDL2204 : no remote procedures specified, no client/server stubs will be generated
The provided interface does not have any remote procedures, so only header files will be generated.

MIDL2205 : too many default cases specified for encapsulated union

An encapsulated union may only have one default: arm.

MIDL2206 : union specification with no fields is illegal
Unions must have at least one field.

MIDL2207 : value out of range
The provided case value is out of the range of the switch type.

MIDL2208 : [context_handle] must be applied on a pointer type
Context handles must always be pointer types. DCE specifies that all context handles must be typed as
"void *".

MIDL2209 : return type must not derive from handle_t
Handle_t may not be returned.

MIDL2210 : [handle] must not be applied to a type deriving from a context handle
A type may not be both a context handle and a generic handle.

MIDL2211 : field deriving from an \"int\" must have size specifier \"small\", \"short\", or \"long\"
with the \"int\"
The use of "int" is not remotable, since the size of "int" may be different accross machines.

MIDL2212 : field must not derive from a void or void *
Void and void * are not remotable types.

MIDL2213 : field must not derive from a struct containing bit-fields
bit fields in structs are not remotable.

MIDL2214 : field must not derive from a non-rpcable union
A union must be specified as a non-encapsulated union or encapsulated union in order to be remoted.
Ordinary C unions lack the discriminant needed to remote the union.

MIDL2215 : field must not derive from a pointer to a function
Pointers to functions may not be remoted.

MIDL2216 : cannot use [fault_status] on both a parameter and a return type
[fault_status] may only be used once per procedure, although [comm_status] may be used independently.

MIDL2217 : return type too complicated for /Oi, using /Os
Large by-value return types may only be handled by /Os optimization stubs. The stubs for this routine will
be generated using /Os optimization.

MIDL2218 : generic handle type too large for /Oi, using /Os
Large by-value generic handle types may only be handled by /Os optimization stubs. The stubs for this
routine will be generated using /Os optimization.

MIDL2219 : [allocate(all_nodes)] on an [in,out] parameter may orphan the original memory
Use of [allocate(all_nodes)] on an [in,out] parameter must re-allocate contiguous memory for the [out]
direction, thus orphaning the [in] parameter. This usage is not recommended.

MIDL2220 : cannot have a [ref] pointer as a union arm
Ref pointers must always point to valid memory, but an [in,out] union with a ref pointer may return a ref
pointer when the [in] direction used another type.

MIDL2222 : use of [comm_status] or [fault_status] not supported for /Oi, using /Os
[comm_status] and [fault_status] may only be handled by /Os optimization stubs. The stubs for this
routine will be generated using /Os optimization.

MIDL2223 : use of an unknown type for [represent_as] not supported for /Oi, using /Os
Use of a represent_as with a local type that is not defined in the idl file or an imported idl file may only be
handled by /Os optimization stubs. The stubs for this routine will be generated using /Os optimization.

MIDL2224 : array types with [transmit_as] or [represent_as] not supported on return type for /Oi,
using /Os
Returning an array with [transmit_as] or [represent_as] applied may only be handled by /Os optimization
stubs. The stubs for this routine will be generated using /Os optimization.

MIDL2226 : [callback] requires /ms_ext
[callback] is a Microsoft extension and requires use of the /ms_ext switch.

MIDL2227 : circular interface dependency
This interface uses itself (directly or indirectly) as a base interface.

MIDL2228 : only IUnknown may be used as the root interface
Currently, all interfaces must have IUnknown as the root interface.

MIDL2229 : [IID_IS] may only be applied to pointers to interfaces
[iid_is] can only be applied to interface pointers, although they may be specified as IUnknown *.

MIDL2230 : interfaces may only be used in pointer-to-interface constructs
Interface names may not be used except as base interfaces or interface pointers.

MIDL2231 : interface pointers must have a UUID/IID
The base type of the iid_is expression must be a UUID/GUID/IID type.

MIDL2232 : definitions and declarations outside of interface body requires /ms_ext
Putting declarations and definitions outside of any interface body is a Microsoft extension and requires the
use of the /ms_ext switch.

MIDL2233 : multiple interfaces in one file requires /ms_ext
Using multiple interfaces in a single idl file is a Microsoft extension and requires the use of the /ms_ext
switch.

MIDL2234 : only one of [implicit_handle], [auto_handle], or [explicit_handle] allowed
Each interface may only have one of the above.

MIDL2235 : [implicit_handle] references a type which is not a handle
Implicit handles must be of one of the handle types.

MIDL2236 : [object] procs may only be used with "/env win32"
[object] interfaces may not be used with 16-bit environments.

MIDL2237 : [callback] with -env dos/win16 not supported for /Oi, using /Os
Callbacks in 16-bit environments may only be handled by /Os optimization stubs. The stubs for this
routine will be generated using /Os optimization.

MIDL2238 : float/double not supported as top-level parameter for /Oi, using /Os
Float and double as parameters may only be handled by /Os optimization stubs. The stubs for this routine
will be generated using /Os optimization. Float and double within structs/arrays/etc. May still be handled
with /Oi.

MIDL2239 : pointers to context handles may not be used as return values
Context handles must be used as direct return values, not indirect return values.

MIDL2240 : procedures in an object interface must return an HRESULT
All non-[local] procedures in an object interface must return an HRESULT/SCODE.

MIDL2241 : duplicate UUID
UUIDs must be unique.

MIDL2242 : [object] interfaces must derive from other [object] interfaces
Interface inheritance is only allowed using object interfaces.

MIDL2243 : [IID_IS] expression must be a pointer to IID structure
The base type of the iid_is expression must be a UUID/GUID/IID type.

MIDL2244 : [call_as] type must be a [local] procedure
Tthe target of a call_as, if defined, must have [local] applied.

MIDL2245 : undefined [call_as] must not be used in an object interface [call_as]: in_list
Another routine defined in the ACf is attempting to use the same call_as routine as the previous routine.

MIDL2246 : [auto_handle] may not be used with [encode] or [decode]
[encode] and [decode] may only be used with explicit handles or implicit handles.

MIDL2247 : normal procs are not allowed in an interface with [encode] or [decode]
Interfaces containing [encode] or [decode] procedures may not also have remoted procedures.

MIDL2248 : top-level conformance or variance not allowed with [encode] or [decode]
Types that have top-level conformance or variance may not use type serialization, since there is no way
to provide sizing/lengthing. Structs containing them are, however, allowed.

MIDL2249 : [out] parameters may not have \"const\"
Since an [out] parameter is altered, it may not have const.

MIDL2250 : return values may not have \"const\"
Since a function value is set, it must not have const.

MIDL2251 : multiple calling conventions illegal
Only one calling convention may be applied to a single procedure.

MIDL2252 : attribute illegal on [object] procedure
The above attribute only applies to procedures in interfaces that do not have [object].

MIDL2253 : [out] interface pointers must use double indirection
Since the altered value is the pointer to the interface, there must be another level of indirection above it to
allow it to be returned.

MIDL2254 : procedure used twice as the caller in [call_as]
A given [local] procedure may only be used once as the target of a [call_as], in order to avoid name
clashes.

MIDL2255 : [call_as] target must have [local] in an object interface
The target of a call_as must be a defined, [local] procedure in the current interface.

MIDL2256 : [code] and [nocode] may not be used together
These two attributes are contradictory, and may not be used together.

MIDL2257 : [maybe] procedures may not have a return value or [out] params
Since [maybe] procedures may never return, there is no way to get returned values.

MIDL2258 : pointer to function must be used
Although function type definitions are allowed in /c_ext mode, they may only be used as pointers to
functions (and may never be remoted).

MIDL2259 : functions may not be passed in an RPC operation

Functions and function pointers may not be remoted.

MIDL2260 : hyper/double not supported as return value for /Oi, using /Os
Hyper and double return values may only be handled by /Os optimization stubs. The stubs for this routine
will be generated using /Os optimization.

MIDL2261 : #pragma pack(pop) without matching #pragma pack(push)
#pragma pack(push) and #pragma pack(pop) must appear in matching pairs. At least one too many
#pragma pack(push)'s were specified.

MIDL2262 : stringable structure fields must be byte/char/wchar_t
[string] may only be applied to a struct whose fields are all of type byte, or a type definition equivalent of
byte.

MIDL2263 : [notify] not supported for /Oi, using /Os
The [notify] attribute may only be processed by /Os optimization stubs.

MIDL2264 : handle parameter or return type is not supported on a procedure in an [object]
interface
Handles may not be used with [object] interfaces.

MIDL2265 : ANSI C only allows the leftmost array bound to be unspecified
In an conformant array, ANSI C only allows the leftmost (most significant) array bound to be unspecified.
If multiple dimensions are conformant, MIDL will attempt to put a "1" in the other conformant dimensions.
If the other dimensions are defined in a different typedef, this may not be possible. Try putting all the array
dimensions on the use of the array to avoid this. In any case, beware of the array indexing calculations
done by the compiler; you may need to do your own calculations using the actual sizes.

